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Next-generation sequencing technologies have made it possible to sequence targeted regions of the human genome in
hundreds of individuals. Deep sequencing represents a powerful approach for the discovery of the complete spectrum
of DNA sequence variants in functionally important genomic intervals. Current methods for single nucleotide poly-
morphism (SNP) detection are designed to detect SNPs from single individual sequence data sets. Here, we describe a novel
method SNIP-Seq (single nucleotide polymorphism identification from population sequence data) that leverages sequence
data from a population of individuals to detect SNPs and assign genotypes to individuals. To evaluate our method, we
utilized sequence data from a 200-kilobase (kb) region on chromosome 9p21 of the human genome. This region was
sequenced in 48 individuals (five sequenced in duplicate) using the Illumina GA platform. Using this data set, we dem-
onstrate that our method is highly accurate for detecting variants and can filter out false SNPs that are attributable to
sequencing errors. The concordance of sequencing-based genotype assignments between duplicate samples was 98.8%.
The 200-kb region was independently sequenced to a high depth of coverage using two sequence pools containing the 48
individuals. Many of the novel SNPs identified by SNIP-Seq from the individual sequencing were validated by the pooled
sequencing data and were subsequently confirmed by Sanger sequencing. We estimate that SNIP-Seq achieves a low false-
positive rate of ;2%, improving upon the higher false-positive rate for existing methods that do not utilize population
sequence data. Collectively, these results suggest that analysis of population sequencing data is a powerful approach for the
accurate detection of SNPs and the assignment of genotypes to individual samples.

[Supplemental material is available online at http://www.genome.org. The SNIP-Seq method is freely available at http://
polymorphism.scripps.edu/;vbansal/software/SNIP-Seq/.]

With the availability of several next-generation sequencing plat-

forms, the cost of DNA sequencing has dropped dramatically over

the past few years and improvements in technology are expected

to decrease the cost further (Shendure and Ji 2008). Next-generation

sequencers, such as the Illumina Genome Analyzer (GA), can gen-

erate gigabases of nucleotides per day and have enabled the se-

quencing of complete individual human genomes (Bentley et al.

2008; Ley et al. 2008; Wang et al. 2008; Wheeler et al. 2008;

McKernan et al. 2009). While the resequencing of complete human

genomes still remains quite expensive, the targeted sequencing of

specific genomic intervals in a large population of individuals is

now feasible in an individual laboratory. Resequencing of coding

sequences of genes in large populations has previously been shown

to be useful for identifying multiple rare variants affecting quanti-

tative traits (Cohen et al. 2004, 2006; Ji et al. 2008). Resequencing of

genomic regions identified by genome-wide association studies in

healthy and diseased populations represents a powerful strategy

for assessing the contribution of rare variants to disease etiology.

Nejentsev et al. (2009) have used this approach to identify four rare

variants protective for type 1 diabetes.

For harnessing the capacity of next-generation sequencers for

deep population resequencing, the first challenge is to selectively

capture DNA from the region of interest. Recently, Craig et al.

(2008) used long-range PCR and DNA barcodes to sequence spe-

cific regions of the human regions in multiple samples simulta-

neously using the Illumina GA. Harismendy et al. (2009) also used

long-range PCR to sequence targeted regions of the human ge-

nome using multiple sequencing platforms to evaluate the feasi-

bility of targeted population sequencing and the concordancy of

variant calling between the different platforms. However, tradi-

tional sequence capture methods, such as long-range polymerase

chain reaction (LR-PCR), are not adequate for capturing thousands

of noncontiguous regions of the genome, e.g., all exons, in a large

number of samples. Several high-throughput target capture meth-

ods have been developed (Hodges et al. 2007; Okou et al. 2007;

Porreca et al. 2007; Turner et al. 2009).

After millions of reads have been generated by the sequencer,

the next challenge is to identify genetic variants by mapping the

reads to a reference sequence. A variety of tools have been de-

veloped that can efficiently align hundreds of millions of short

reads to a reference sequence even in the presence of multiple er-

rors in the reads (Li et al. 2008; Langmead et al. 2009; Li and Durbin

2009; Li et al. 2009b). Each base mismatch in an aligned read

represents either a sequencing error or a single nucleotide variant

in the diploid individual. To compensate for the high sequencing

error rates of next-generation sequencing platforms, one requires

the presence of multiple overlapping reads, each with a base dif-

ferent from the reference base for single nucleotide polymorphism

(SNP) calling. Base quality values—probability estimates of the

correctness of a base call—are particularly useful for distinguishing

sequencing errors from SNPs. The Illumina sequencing system

generates a phred-like quality score for each base call using various

predictors of the sequencing errors. SNP calling methods for Illu-

mina sequence data utilize these base quality values to compute
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the likelihood of different genotypes at each position using

Bayesian or statistical models (Li et al. 2008, 2009a). Positions for

which the most likely genotype is different from the reference

genotype and which satisfy additional filters on neighborhood

sequence quality, read alignment quality, etc. are reported as SNPs.

However, sequencing errors for the Illumina GA are not completely

random and are dependent on the local sequence context of the

base being read, the position of the base in the read, etc. (Dohm

et al. 2008; Erlich et al. 2008). Therefore, assuming independence

between multiple base calls, each with a non-reference base, results

in overcalling of SNPs, i.e., increased number of false-positives. To

reduce the number of false variant calls, the MAQ SNP caller (Li

et al. 2008) uses a dependency model to estimate an average error

rate using all base quality scores.

MAQ and other SNP calling methods have enabled fairly ac-

curate detection of SNPs from resequencing of individual human

genomes (Bentley et al. 2008; Wang et al. 2008). However, there is

potential for developing more accurate SNP detection methods,

in particular, by taking advantage of sequence information from

a population of sequenced individuals. Comparison of sequenced

reads for a potential variant site across multiple individuals has the

potential to differentiate systematic sequencing errors from real

SNPs. Patterns of mismatched bases (bases not matching the ref-

erence base) resulting from systematic sequencing errors are likely

to be shared across individuals. On the other hand, the profiles of

mismatched bases between individuals with and without a SNP are

likely to be distinct. Comparison of read alignments across mul-

tiple individuals also has the potential to filter out SNPs that are an

artifact of inaccurate read alignments. We present a probabilistic

model that leverages sequence data from a population of in-

dividuals, each sequenced separately, for detecting single nucleo-

tide variants and also assigning genotypes to each individual in

the population.3 Our method recalibrates each base quality value

by adding a population error correction to the Illumina base error

probability. This correction is computed using the distribution of

mismatched bases across all sequenced individuals. The recali-

brated base quality values are then used to compute genotype

probabilities for each individual under a simple Bayesian model

that assumes independence between base calls. Finally, positions in

the sequence with one or more individuals showing evidence for

harboring a non-reference allele are identified as SNPs. Craig et al.

(2008) described a similar approach for SNP detection using se-

quence data from multiple individuals where they used Bayes

factors to compare the fraction of reads with the alternate allele

across multiple individuals. Sites at which one or more individuals

have a fraction of reads with the alternate allele sufficiently greater

than the average were identified as SNPs. Our model is much more

general and can take advantage of the complete information about

each base call, i.e., base quality value, position in the read con-

taining the base, and the strand to which the read aligns to.

To evaluate our population SNP detection method, we ana-

lyzed sequence data from a 200-kilobase (kb)-long region on chro-

mosome 9p21 that was sequenced to a median depth of 453 in 48

individuals using the Illumina Genome Analyzer (O Harismendy,

V Bansal, N Rahim, X Wang, N Heintzman, B Ren, EJ Topol, and KA

Frazer, in prep.). We demonstrate that our method can accurately

detect SNPs with a low false-positive rate (;2%) and a low false-

negative rate in comparison to SNP detection from individual se-

quence data using MAQ. By comparing genotype calls between

replicate samples, we show a 98.8% accuracy for sequence-based

genotyping using our method.

Results
For SNP detection using sequence data from one individual, there

is no distinction between common or rare variants. In contrast,

SNPs with a high minor allele frequency should be easier to detect

by sequencing a population of individuals. The more challenging

task is to distinguish rare SNPs from sequencing errors. Systematic

sequencing errors can result in a few individuals being called as

heterozygous for a particular position using individual sequence

reads. Other individuals in the population also carry a small num-

ber of reads with the alternate allele, but may be below the

threshold for being classified as heterozygous. For real SNPs, in-

dividuals homozygous for the reference allele are unlikely to

demonstrate reads with the alternate allele. Using population se-

quence information, one can potentially distinguish between false

SNPs due to sequencing errors and real SNPs.

Before presenting the formal description, we use an example

to illustrate the intuition behind our approach. Consider a poten-

tial SNP site in a population of individuals with reference allele

A and alternate allele B. Each individual in a population has one

of three possible genotypes: AA, AB, and BB, assuming the locus is

biallelic. Due to sequencing errors, even individuals with the ge-

notype AA can have reads with the B allele. Consider the case

where one individual has seven reads with the A allele and three

reads with the B allele. If none of the other sequenced individuals

in a population carries a read with the B allele, it is very likely that

the position represents a real variant. If many individuals carry

a small number of reads with the B allele, then the position could

represent a common SNP or all reads with the B allele could be

attributed to systematic sequencing error in reading the base A as B.

However, if the three B alleles are in the same position in the reads,

then the SNP is unlikely to be a real one. In general, comparison of

the distribution (strand to which read is aligned, position in read,

and base quality score) of mismatched bases across multiple in-

dividuals can reveal whether the reads with an alternate allele in

a single individual represent a SNP or are an artifact of sequencing

errors.

Framework for population SNP detection

For each potential SNP position, the reads from all individuals that

cover this position are partitioned into bins based on the position

of the variant site in the read, the base quality score and the strand

of the reference sequence that the reads align to. Non-reference

base calls for individuals who are homozygous for the reference

base at the SNP position represent sequencing errors. For each bin,

our method utilizes the base counts from such individuals to

recalibrate the Illumina base quality values by adding a population

error correction to the base error probability. The rationale behind

this approach is that systematic base-call errors in the sequencing

(if any) are likely to be clustered in one or more bins, since such

errors are dependent upon the local sequence context (the nucle-

otides flanking the base being read), the base being read, position

of the base within the read, etc. (Dohm et al. 2008; Erlich et al.

2008). In contrast, non-reference base calls that represent a variant

allele are expected to be more or less randomly distributed across

the bins. Therefore, the correction is expected to lower the base

quality values of non-reference base calls that represent systematic

3We use the term population sequencing for the sequencing of multiple in-
dividuals rather than the sequencing of a population of individuals with a similar
genetic background.
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sequencing errors and not affect base calls that represent alternate

alleles. Lowering the base quality values of erroneous base calls is

likely to decrease the probability of calling systematic sequencing

errors as SNPs.

For computing the population error correction, we partition

the reads from all sequenced individuals covering a potential SNP

site into 36 3 2 3 3 bins. Each bin corresponds to one of the 36

sequencing cycles, one of the two strands to which the read aligns

(forward/reverse), and one of the three intervals for the base

quality value (0–9, 10–19, and 20–30). For each bin, we used the

base calls from individuals who are homozygous for the reference

base R to compute an empirical error probability Pb of each base call

being incorrect (see Methods). For each base, let Pq denote the

probability of the base call being incorrect using the Illumina base

quality value. We define the combined error probability as

Pq + ð1� PqÞ � Pb �wb: ð1Þ

Here, (1 � Pq) � Pb � wb is the population error correction and

wb is the weight of the contribution of the empirical error proba-

bility and is proportional to the square root of the number of reads

in the bin containing the base call.

Algorithm for SNP detection and genotyping (SNIP-Seq)

The algorithm starts by assigning a genotype to each individual in

the population using the posterior probability distribution of the

genotypes, which is computed using the Illumina base quality

values under a simple Bayesian model (see Methods). For a poten-

tial SNP with reference allele A and alternate allele B, each in-

dividual is assigned one of the three genotypes: AA, AB, or BB.

Using the base calls for the individuals with the AA genotype, the

algorithm computes the population-derived correction for each

bin using the formula described previously and recalibrates the

base quality values for each base call. A genotype is sampled for

each individual using the new base quality values under the

Bayesian model. This procedure is repeated iteratively until the

genotype assignments do not change between consecutive itera-

tions. The complete algorithm for iteratively sampling the geno-

types, re-estimating the base quality values, and detecting SNPs is

as follows:

For each potential variant site in the sequenced region:

1. Set the base quality value for each base call to the Illumina

quality value

2. For k = 1, 2,. . .

a. Sample a genotype for each individual from the posterior

distribution using a heterozygote prior of 0.001.

b. Recalibrate the quality score for each base call using

genotypes for all individuals.

3. If the genotype of any individual is different from the reference,

identify position as a SNP.

4. Sample a genotype for each individual from the posterior

distribution computed using a heterozygote prior of 0.2.

Accuracy of SNP detection

We applied our method to sequence data on 48 individuals from

a 200-kb region on chromosome 9p21. The individuals were se-

quenced on two runs of the Illumina GA using barcoded adapters

at a median coverage of ;453 (for the distribution of average se-

quence coverage for each of the sequenced samples and the dis-

tribution of the median sequence coverage at each position across

the targeted region, see Fig. 1). Five of the 48 individuals were se-

quenced twice resulting in a total of 53 sequenced samples (for

details of sequencing, see Methods). We used the MAQ aligner to

align the reads to the reference sequence and filtered read align-

ments for uniquely mapping reads (see Methods). Our SNP de-

tection method, SNIP-Seq (single nucleotide polymorphism iden-

tification from population sequence data), identified 775 single

nucleotide variants across the 53 samples (Fig. 2). We compared the

identified SNPs to variants in dbSNP (build 129), 458 variants

(59%) matched previously identified SNPs with the identical al-

ternate allele. A large fraction (80%) of the 317 novel variants was

observed in a small number of samples (170 in one sample and 84

in two samples). For comparison, we also applied the default MAQ

SNP calling method (threshold of Q20) to detect SNPs in each of

the 53 sequenced samples. This identified 788 SNPs, of which 455

(58%) overlapped known SNPs in dbSNP and 719 SNPs were shared

with SNIP-Seq (including 265 novel variants not present in

dbSNP). Of the 56 SNPs exclusive to SNIP-Seq, six were concordant

between duplicate samples suggesting that they are real, seven

were singletons (detected in only one sample) that showed clear

evidence for the presence of an alternate allele (four or more

Figure 1. (A) Distribution of the average sequence coverage for the 53
sequenced samples. (B) Distribution of the median sequence coverage for
each position across the 53 samples.
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unique start-site reads), and four were present in dbSNP (Fig. 2).

Three of the four SNPs present in dbSNP were located close to the

boundary of a repetitive sequence (for an illustration, see Fig. 3).

SNPs near repetitive sequences are typically filtered out by in-

dividual SNP calling methods to avoid false SNPs.

Considering the 69 SNPs exclusive

to MAQ, only one was present in dbSNP.

This SNP had low coverage (103) and was

below the threshold to call SNPs using

SNIP-Seq. Further analysis of these 69

SNPs revealed that 22 overlapped pre-

viously known indels (dbSNP 129) and

had read alignment patterns consistent

with indels, clearly indicating that these

represent indel variants that are classified

as SNPs, due to inaccurate alignments.

For 33 (71.7%) of the 46 SNPs exclusive

to MAQ (excluding those that overlap

known indels and the one SNP present

in dbSNP), the genotype consensus score

(maximum over all samples classified as

heterozygous) was below Q30. In com-

parison, only 19 (7.5%) of the 265 novel

SNP common to MAQ and SNIP-Seq had

a best genotype consensus score less than

Q30. This suggests enrichment for false-

positives in the set of SNPs with a MAQ

consensus score below Q30. Increasing

the threshold from Q20 to Q30 for MAQ

would reduce the number of false-posi-

tives, but also filter out some real SNPs.

To estimate SNIP-Seq false-negative

rates, one of the 48 individuals was se-

quenced to a very high depth of coverage

(3003) using one lane of the Illumina

GA. At such a high sequence depth, all

SNPs should be easily identifiable. We

identified 260 SNPs in this individual

using a simple SNP calling method (see

Methods). Of these, 253 were detected in

the same individual sequenced as part of

the indexed population sequencing. Each

of the seven missed SNPs either had low

sequence coverage in the indexed sam-

ple (4/7) or was present in low complex-

ity sequence (5/7). Comparison to dbSNP,

the high overlap between the SNP calls

from MAQ and SNIP-Seq and results from

the deep sequencing of one individual

indicate that our method has a low false-

negative rate of ;2%–3%.

Validation of novel SNPs using
pooled sequencing data and Sanger
sequencing

To validate novel SNP calls exclusively

identified by MAQ and our algorithm

SNIP-Seq, we utilized pooled sequenc-

ing data from the 200-kb region for 50

individuals. These 50 individuals (the

48 individuals sequenced individually

and two additional individuals) were sequenced in two pools of 25

individuals each using one run of the Illumina GA. Both pools had

an average sequence coverage greater than ;20003, resulting in

each individual having a very high depth of coverage. We iden-

tified potential SNPs from this data by comparing allele counts

Figure 2. Comparison of the set of SNPs identified by SNIP-Seq and MAQ from the 53 samples.

Figure 3. SNP calling at the edge of a repetitive sequence. SNP rs10217269 is at the boundary of
a repetitive sequence with 17 of the 36 36-mers covering the position aligning to multiple locations in
the reference sequence. However, 19 36-mers align uniquely to this position (allowing for 0–1 mis-
matches) and hence can be used by SNIP-Seq to detect a SNP at this site.
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between the two pools for every position in the reference sequence

using the Fisher’s exact test (see Methods). Using this approach, we

detected 700 SNPs of which 394 represent previously known SNPs

(dbSNP v129) and 645 match SNPs identified by MAQ or SNIP-Seq

using the population sequencing. A large fraction of the SNPs that

were not identified using this approach either represented SNPs

present in equal numbers of individuals in the two pools or sin-

gletons (data not shown). The substantial overlap with the in-

dividual SNP calls suggested that this simple approach could ac-

curately identify SNPs from pooled sequencing data and could

therefore be used to validate novel SNP calls.

Twenty-four SNPs exclusive to SNIP-Seq were shared with

pooled SNP calls. For each of these SNPs, the alternate alleles be-

tween the individual sequencing data and the pooled sequencing

were identical. Excluding two of these SNPs that were also present

in dbSNP, pooled sequencing supported an additional 22 novel

SNPs called by SNIP-Seq. In comparison, only seven SNPs exclu-

sively identified by MAQ showed evidence for the presence of

a SNP from the pooled sequencing data. The pooled sequencing

was done independently of the indexed sequencing and we used

a completely different method to detect SNPs from the pooled

sequence data. Hence, the pooled SNP calls are unlikely to be bi-

ased in favor of either SNIP-Seq or MAQ. Nevertheless, the subset

of SNP calls supported by the pooled sequencing data was further

validated by PCR amplification and Sanger sequencing. Twenty-six

of the 29 SNPs (20/22 for SNIP-Seq and 6/7 for MAQ) were suc-

cessfully amplified and Sanger sequenced (Supplemental Table 1).

For SNIP-Seq, all 20 SNPs were confirmed to be heterozygous by

Sanger sequencing with the identical alternate allele. For MAQ,

two of the six SNPs were heterozygous, three were homozygous for

the reference allele, and one SNP turned out be a 5-bp homozygote

indel.

Thus, of the 56 exclusive SNIP-Seq SNPs, 39 (69.6%) have

independent evidence that they are likely real (see Fig. 2). Whereas

for the 69 exclusive MAQ SNPs, only three (4.3%) have inde-

pendent evidence supporting they are real. Overall, the greater

fraction of SNPs exclusive to SNIP-Seq that are validated point to

a lower false-positive rate for SNIP-Seq. Although it is difficult to

obtain precise estimates for the false-positive rate for SNP calling,

we estimate that our method has a low false-positive rate4 ;2% (17

of 775 SNPs).

Accuracy of sequence-based genotype calls

An important application of population resequencing is to de-

termine the genotype at SNPs for each individual in a population.

Accurate genotyping of SNPs is crucial for sequencing-based asso-

ciation studies to be feasible. We assessed the accuracy of the se-

quencing derived genotype calls using two different strategies.

First, we evaluated the sequence-based genotypes at 21 SNPs

(present in dbSNP) that were also genotyped in the 48 sequenced

individuals using the Sequenom MassARRAY platform (see Meth-

ods). Of 1035 genotype calls common between the Sequenom

genotypes and SNIP-Seq genotype calls, 34 were discordant. These

discordancies could be further categorized as 28 heterozygote

undercalls (heterozygote call by one method called as reference

homozygote by other) and six heterozygote overcalls (heterozy-

gote called as reference homozygote by other). Analysis of the se-

quence coverage at these 34 genotypes in the sequenced samples

showed that 15 had coverage below 103, 26 had sequence cover-

age below 203, and none had coverage greater than 303. There-

fore, low sequence coverage could explain virtually all discordan-

cies and 98.1% of SNIP-Seq genotype calls with sequence coverage

$103 were concordant with the array-based genotype calls.

Although known SNPs can be genotyped using genotyping

arrays, certain SNPs can fail genotyping due to the presence of

hidden variants (Bentley et al. 2008). Sequencing represents the

most direct method for the simultaneous discovery and genotyp-

ing of SNPs and has been shown to be robust to the presence of

hidden variants. In order to evaluate the accuracy of genotype

calling between duplicate samples at all identified SNPs, we took

advantage of sequence data from five individuals that were se-

quenced twice on the Illumina GA. For each pair of duplicate

samples, we compared the genotype calls at each position in the

reference sequence. We restricted the comparison to sites for which

both samples had at least 103 coverage and those which were

called as heterozygote or alternate homozygote in at least one of

the two samples. In total, we had 1060 pairs of comparisons for the

five pairs of duplicate samples using the SNIP-Seq algorithm. Only

13 of these pair of genotype calls were discordant, which corre-

sponds to an error rate of 1.2%. The 13 discordancies represented

nine heterozygote undercalls and four heterozygote overcalls. In

contrast, 31 of 1035 (3.1%) pairs of genotype calls were discordant

for the MAQ variant calls. These represented 24 heterozygote

undercalls, six heterozygote overcalls, and one genotype classified

as reference homozygote in one duplicate and as alternate homo-

zygote in the other. The different number of comparisons is due to

the different sets of SNPs reported by the two methods. These re-

sults demonstrate that the population-based approach has a sig-

nificantly lower discordancy rate for genotype assignments be-

tween duplicate samples and an absolute accuracy of 98.8%. This

greater accuracy is due to improved genotype calling and in part

due to the greater accuracy in detecting SNPs, since false SNPs are

more likely to be discordant between duplicates.

SNP detection using base counts

Our method uses the base calls in each bin for computing the

population error correction that is used to recalibrate each base

quality value in the bin. For computing an accurate estimate of

the population error value, each bin should contain a sufficient

number of base calls. In the most general model described earlier,

each sequencing cycle corresponds to a separate bin. For 53 sam-

ples, each sequenced to an average coverage of 453, the average

number of base calls in each bin5 was ;33. When the number of

sequenced samples is not very large, the number of base calls in

each bin can be increased by reducing the granularity of the bins.

For example, sequencing cycles with similar error rates can be

grouped together. To illustrate the flexibility of our population SNP

calling framework, we considered a binning approach where the

base calls for each position were partitioned into two bins, one for

each strand. This approach ignored position-specific error rates.

Therefore, we only considered bases at positions 2–26 in reads,

since the average sequencing error rate increased significantly after

cycle 26 (see Fig. 4). In addition, we removed base calls with quality

scores below 10. Using this model, our method identified 742 SNPs

in the 53 samples. 739 of these were identical to the SNPs detected

in the 53 samples using SNIP-Seq under the more general model.

The reduced number of detected SNPs can be explained by the

4False-positive rate is defined as the fraction of SNPs called across all samples in
the population that are not real. 5Assuming 72 bins corresponding to 36 bp reads and the two strands.
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reduction in the effective coverage. The small number of novel

SNPs likely represents false variants since the general model is

more effective in filtering out false-positives.

Application of SNIP-Seq to additional population sequencing
data sets

To further demonstrate the ability of SNIP-Seq to accurately iden-

tify SNPs while achieving a low false-positive rate, we applied it to

population sequence data obtained from the targeted sequencing

of ;190 kb of the human genome in 42 individuals using 36-bp

single end Illumina reads (Scripps Genomic Medicine, unpub.).

The targeted regions were amplified using LR-PCR and sequenced

using barcoded adapters in a similar manner as for the chromo-

some 9p21 population data set. The average sequence coverage was

80 6 32 across the 42 individuals. We applied SNIP-Seq (with the

same parameters as used for the 9p21 data set) to identify SNPs

from the sequenced population of individuals. SNIP-Seq identified

673 SNPs in the sequenced population of which 378 (56.2%) were

present in dbSNP and 634 (94.2%) were also identified by MAQ (at

a Q20 threshold). Thirty-two of the 39 SNPs exclusive to SNIP-Seq

were singleton heterozygotes. Further analysis of these 39 SNPs

showed that five were present in dbSNP with the identical alternate

allele, seven were singletons identified by MAQ as SNPs but had

a consensus score below 20, and four singletons had the MAQ

consensus genotype as heterozgote, but were filtered out. An ad-

ditional 10 singleton SNPs had strong evidence for the presence of

the alternate allele with 90%–96% of the reads with the alternate

allele across the population concentrated in only one individual.

Of the remaining 13 SNPs, one was classified as heterozygote in all

samples (suggesting some type of systematic error) and eight SNPs

minimally satisfied the thresholds used for identifying SNPs using

SNIP-Seq. These results indicate that the false-positive rate of SNIP-

Seq on this data set is not more than 2%–3% and similar to that for

the 9p21 data set.

The 1000 Genomes project (http://1000genomes.org/) has

sequenced the coding regions of 1000 genes in several hundred

individuals (Pilot Project 3). We applied SNIP-Seq to identify SNPs

from this population sequence data. SNIP-Seq identified 626 SNPs

in 120 individuals across ;150 kb of targeted regions on chro-

mosome 1 (for details, see Supplemental material). Of these, 304

(48.6%) represented previously known

SNPs (dbSNP 129). Further analysis showed

that 46% of the known cSNPs were non-

synonymous. In comparison, 55% of the

novel cSNPs were nonsynonymous. For

coding SNPs, the ratio of transitions to

transversions was 2.99, consistent with

previous observations (Freudenberg-Hua

et al. 2003). While it is difficult to esti-

mate the accuracy of SNIP-Seq on this

data without validation of the novel SNP

calls, it demonstrated the general appli-

cability of our method.

Discussion
Deep sequencing of genomic regions

represents a powerful approach to iden-

tify the complete spectrum of DNA se-

quence variants. With the availability of

ultrahigh-throughput sequencing plat-

forms and efficient target capture methods, sequence-based asso-

ciation scans are likely to become common in the near future.

Accurate detection and genotyping of SNPs is crucial for using

population sequencing to detect rare, as well as common, variants

that increase susceptibility to common diseases. The short read

lengths and the high error rates of reads generated by the Illumina

GA pose new computational challenges for the accurate detection

of SNPs. Many methods have been developed for aligning short

reads with multiple errors to a reference sequence and SNP calling

for the Illumina GA (Li et al. 2008, 2009a,b; Malhis et al. 2009). In

particular, MAQ represents an efficient, easy-to-use and popular

tool for read alignment and SNP calling. However, MAQ and other

SNP detection methods have been designed for calling SNPs using

individual sequence data and do not take advantage of sequence

data from a population of individuals.

We have proposed a novel approach to SNP detection that

leverages sequence data from multiple individuals at the same lo-

cus. For each potential SNP, SNIP-Seq utilizes the set of base calls

across all samples to recalibrate base quality values, identifies SNPs

in each sample individually using the recalibrated base quality

values and subsequently assigns genotypes to each sample at each

SNP site. For sampling genotypes in each sample, we use a simple

Bayesian model that assumes independence between multiple

base calls. Systematic sequencing errors can result in inflated base

quality values, which in turn, can result in a high false-positive rate

for SNP calling under the simple Bayesian model. However, the

recalibration is designed to lower the base-quality values of non-

random sequencing errors, which in turn is expected to lower the

probability of calling such sequencing errors as SNPs using the

simple Bayesian model. Using sequence data from a 200-kb re-

gion of the human genome sequenced in 48 individuals, we have

demonstrated the accuracy of our method for both SNP detection

and genotype assignment. Comparison to previously reported

variants in dbSNP and validation of novel variants using pooled

sequencing data strongly suggests that our method has a lower

false-positive rate, as well as a lower false-negative rate, in com-

parison to methods that call SNPs individually for each sample. We

estimate that our method has a low false SNP detection rate of less

than 2%. It is important to note that this represents an estimate of

the population false-positive rate rather than the individual false-

positive rate. Almost all false variant calls correspond to singleton

Figure 4. Distribution of base quality values for each sequencing cycle for one of the 53 sequenced
samples.

Bansal et al.

542 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on April 15, 2020 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


variants (called in one sample), while a large fraction of the real

SNPs are common in the population. Therefore, the individual

false SNP positive rate is much lower than the population false-

positive rate. Similarly, the greater the population frequency of the

non-reference allele for a SNP, the more likely it is to be detected

from population sequencing. Therefore, our false-negative rate of

2%–3% implies a higher population false-negative rate.

There are several advantages to SNP detection using a pop-

ulation of sequenced samples. Population-based SNP detection can

automatically filter out SNPs that represent artifacts of systematic

sequencing errors. Additionally, once a SNP has been identified in

an individual, relaxed criteria can be used to assign genotypes

(detect SNPs at low coverage) in other individuals. Population se-

quence data can be used for SNP detection even in the absence of

accurate base quality values if a large number of individuals are

sequenced. We have demonstrated the power of population SNP

calling using sequencing data from the Illumina GA. However, our

method represents a generic framework for population SNP call-

ing, which could be adapted for sequencing data from other plat-

forms. We note that existing methods for individual SNP calling

could also be modified to leverage sequence data from a population

of individuals.

Finally, our method is designed to detect SNPs in a popula-

tion of individuals where each individual has been sequenced to

a moderate depth of coverage (10–203) on the same sequencing

platform. It does not attempt to combine evidence for the presence

of a SNP from multiple samples and is therefore not suited for SNP

detection from very low coverage population sequence data. It also

does not utilize information from multiple SNPs simultaneously

to identify SNPs or call genotypes. Statistical methods have been

developed to impute genotypes at untyped SNPs or call missing

genotypes using the correlations between alleles at neighboring

SNPs in a population of individuals (Marchini et al. 2007; Servin

and Stephens 2007). Li et al. (2009c) have used simulations to

show that imputation methods can also be used for polymorphism

detection and genotype calling from the sequencing of a large

number of individuals at very low coverage, e.g., 400 individuals at

2–43 coverage per individual. However, in order to detect variants

and impute genotypes, such methods require the sequencing of

a population of individuals with similar ancestry and also require

the variant allele to be observed in the population a sufficient

number of times. In comparison, SNIP-Seq aims to accurately

identify all rare variants (with low false-positive and low false-

negative rates), including those present in a single individual in the

population, and accurately assign genotypes. A large fraction of

false-positives and false-negatives correspond to singletons and for

such variants, imputation-based methods are unlikely to provide

additional information.

Methods

Population sequencing data
We used SNIP-Seq to analyze sequence data from 48 individuals in
a 196-kb interval on chromosome 9p21. This region contains SNPs
associated with Coronary Artery Disease (CAD) and Type 2 Di-
abetes (T2D) in genome-wide association studies. Fifty individuals
were sequenced as part of a study to identify and characterize
the sequence variants in this region (O Harismendy, V Bansal, N
Rahim, X Wang, N Heintzman, B Ren, EJ Topol, and KA Frazer,
in prep.). The targeted region (NCBI36 chr 9: 21,996,845–
22,193,741) was amplified using 42 LR-PCR amplicons in each of
the 50 individuals. The amplicons from each sample were pooled

in equimolar amounts and the pool subjected to DNA library
preparation as previously described (Harismendy et al. 2009) with
the following modification: we used a 4-bp DNA barcode indexing
adapter in the library preparation, similar to indexes used by Craig
et al. (2008). We pooled five to six sequencing libraries indexed
with distinct barcodes in one lane of Illumina GA I and sequenced
for 40 cycles. Forty-eight of the 50 individuals were sequenced with
barcodes and were used for evaluating our SNP calling method
SNIP-Seq. Five of the 48 individuals were sequenced twice resulting
in a total of 53 sequenced samples. The median coverage of the
sequencing for the 53 samples was 453 (Fig. 1).

Read mapping and SNP calling using MAQ

We used MAQ version 0.6.8 (http://maq.sourceforge.net/) to align
the 36-bp reads (after removing the 4-bp barcode) for each sample
to the reference sequence of the targeted region using default pa-
rameters. MAQ calculates the genotype probabilities for each po-
sition in an individual using the sequenced reads and positions for
which the most likely genotype is different from the reference
homozygote genotype are called as potential variant sites. We also
used the default MAQ SNP calling filters to identify SNPs and the
corresponding genotypes for each individual. The default MAQ
SNP caller imposes a Q20 threshold for calling a site as a variant site
in an individual. For each position that was reported by MAQ to be
a SNP in one or more individuals, we used the most likely genotype
from the MAQ consensus calls to assign genotypes to each in-
dividual at that position.

SNP detection using SNIP-Seq

For SNP calling using SNIP-Seq, we utilized the subset of reads with
three or fewer mismatches to the reference sequence. Reads with
a MAQ mapping quality of zero were filtered out for SNP calling.
Such reads have two or more equally good alignments to the ref-
erence sequence. For each potential SNP, reads with the reference
allele were allowed to have at most two mismatches, while reads
that carried the alternate allele were allowed to have a maximum of
three mismatches. This was done to eliminate potential bias in
favor of reads with the reference allele, since reads with the refer-
ence allele have one fewer mismatch to the reference sequence
than reads with the alternate allele. Additionally, for a potential
SNP site, we also filtered out reads with the reference allele if the
corresponding read with the non-reference allele did not have
a unique alignment to the reference sequence. The motivation for
doing this was to remove bias in favor of reads with the reference
allele at any potential SNP site. Additionally, within each aligned
read, we utilized base calls at positions 2–31, since the error rate in
the last five bases increased dramatically (see Fig. 4). Base calls at
the first position were discarded since the quality values of non-
reference base calls were significantly lower than quality values for
reference base calls. Base calls with an Illumina phred-scaled quality
value below 10 were not used for SNP calling. The average error rate
across the 53 sequenced samples (restricted to the filtered set of
base calls) was 0.007 6 0.0018. Figure 4 shows the cycle-to-cycle
distribution of quality values for one of the 53 sequenced samples.

For each potential variant site, SNIP-Seq was initialized with
the list of filtered base calls for each of the sequenced samples. The
algorithm iteratively sampled genotypes for each sample using the
quality values and recalibrated base quality values using the ge-
notype assignments for all samples. The algorithm was allowed to
run for a maximum of five iterations. In practice, however, the
algorithm typically converged in a few iterations. SNPs called by
the algorithm SNIP-Seq were filtered further to remove SNPs with
low read counts and false SNPs likely to be artifacts of inaccurate
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alignments. We required a minimum of reads to call a SNP (53 or
greater), a minimum number of unique start site reads with the
alternate allele (one from each strand or at least three from one
strand), and at least one read with the alternate allele present
outside the ends of the read (first and last 5 bp of the read). If any
one of the sequenced samples passed these filters, the site was
identified as a SNP.

Recalibration of base quality values

For each bin, we used the base calls from individuals who were
called as being homozygous for the reference base R to compute
the four probabilities Pr(R! R9) (R9 = {A, C, T, G}), where Pr(R! R9)
is the probability of reading the base R as R9. We define Pr(R! R9) =

N(R9)/N, where N equals the total number of base calls in the bin
and N(R9) is the number of R9 base calls. For non-reference base
calls, Pb, i.e., the empirical error probability equals Pr(R ! R9),
while for reference base calls, Pb equals 1 � Pr(R ! R9). Pq, the
probability of the base call being incorrect using the Illumina
quality value was computed as 10�0.13Q, where Q is the phred-
scaled base quality value. For recalibrating base quality values us-
ing Equation 1, we used wb = minð1;

ffiffiffiffiffiffiffiffiffiffiffiffi
N=50

p
Þ, which corresponds

to a maximum weight of 1 for bins with 50 or more base calls.
Alternate ways of combining the two error probabilities could be
used, such as by sampling the error probability from a b distribu-
tion derived from the base counts with a prior based on the quality
value.

Individual genotype likelihoods considering all aligned reads

Let R = {R1, R2, . . ., Rn}represent the set of aligned reads covering
a position p in a sample. Let A and B be the two most common
bases at this position (determined using the allele counts for all
sequenced samples). For a diploid individual, consider the three
possible genotypes corresponding to the two alleles A and B: AA,
AB, and BB. We want to find the most likely genotype given the set
of reads R. Assuming independence between sequencing errors
from multiple reads, we can define:

PrðR jAAÞ =
Y

i;Ri=A

½1� PrðRiÞ�
Y

i;Ri=B

PrðRiÞ; ð2Þ

PrðR jBBÞ= ½1� PrðRiÞ�
Y

i;Ri=A

PrðRiÞ; ð3Þ

and

PrðR jABÞ =
Y

i;Ri=A

fðrÞ½1� PrðRiÞ�+ ð1� rÞPrðRiÞg

3
Y

i;Ri=B

fð1� rÞ½1� PrðRiÞ� + ðrÞPrðRiÞg; ð4Þ

where Pr(Ri) is the probability that the base in read Ri is incorrect
and r is the probability of sampling the chromosome with the ‘‘A’’
allele. Pr(Ri) corresponds to the sequencing error probability and
can be derived from the base quality value Q as 10�0.13Q. Assuming
equal likelihood of sampling the two chromosomes, the righthand
side of Equation 4 reduces to 0.5n, where n is the number of reads
with the nucleotide A or B at position p. The posterior probability
of each of the three genotypes {AA, AB, BB}, conditional on the
observed read data, can be computed using Bayes rule:

PrðG= g j RÞ= PrðR j G= gÞPrðG = gÞ
+gPrðR j G= gÞPrðG = gÞ : ð5Þ

We note that similar equations for an independent SNP call-
ing model have been described earlier (Supplemental material, Sec.

4.1; Li et al. 2008). To actually compute the likelihoods, we need to
specify the prior probability of observing a heterozygote genotype.
Similar to previous methods (Li et al. 2009a), the prior probability
of observing a heterozygote, i.e., Pr(AB) was set to 0.001 and the
homozoygote priors Pr(AA) and Pr(BB) equal to [1 � Pr(AB)]/2 for
each sample. For SNPs that have been identified in one or more
individuals in the population, we increase the prior heterozygote
probability to 0.2 to assign genotypes to each sample. More so-
phisticated prior probabilities can be chosen using additional in-
formation about the frequency of different classes of nucleotide
substitutions or knowledge of SNPs from previous studies (Li et al.
2009a).

SNP calling in a single individual sequenced to high depth

One individual was sequenced to an average sequence coverage of
;3003, using one lane of the Illumina GA. For each position, we
used the simple Bayesian model (described in the previous section)
with a heterozygote prior of 0.001 for computing the posterior
likelihoods of the three genotypes corresponding to the two most
common bases. We did not consider base calls with a quality score
below 10, filtered out reads with more than three mismatches to
the reference sequence, and only considered bases at positions 2–31
in the reads.

Pooled sequencing and SNP detection

The targeted region was amplified separately in the 50 individuals
(including the 48 individuals sequenced using indexing) using the
42 LR-PCR amplicons. The amplicons were then pooled in equi-
molar amounts to form two pools of 25 individuals each. A DNA
sequencing library was then prepared from each pool as described
by O Harismendy, V Bansal, N Rahim, X Wang, N Heintzman, B
Ren, EJ Topol, and KA Frazer (in prep.). We sequenced each pool
on four lanes of the Illumina GA1 sequencer for 36 cycles using
version one recipes. After pooling the reads from the four lanes
and aligning them to the targeted reference sequence, we obtained
an average coverage of 20003 per pool, resulting in an average
depth of 803 per sample.

We used the MAQ alignment program to align the reads to the
reference sequence. We only considered reads with three or less
mismatches and base calls with quality scores of 10 or greater for
computing allele counts. For each position s in the reference se-
quence, we computed the two allele counts ai and bi (i = 1, 2) for
each of the two pools. The allele counts were computed separetely
for the two strands. We used the Fisher’s exact test to compute
a P-value for the significance of the difference in allele counts be-
tween the two pools. Positions with a P-value below 0.01 were
reported as potential SNPs. We required significant evidence of
difference in allele counts between the two pools from both
strands (each strand P-value # 0.2). This approach identified 700
single nucleotide variants of which 390 were present in dbSNP and
645 overlapped SNPs identified by MAQ or our method SNIP-Seq.

Validation of SNPs by Sanger sequencing

We attempted to validate each of the 29 novel SNPs that were
supported by the pooled sequencing data. Amplicons were de-
signed using Primer3 (http://frodo.wi.mit.edu/primer3/) with de-
fault parameters for 26 SNPs (20 for SNIP-Seq and six for MAQ). For
each SNP, PCR amplification was performed in one sample with
the strongest evidence for the presence of the variant allele. Am-
plification was carried out in 50-mL reactions with 13 Phusion HF
buffer, 200 mM dNTPs, 0.5 mM forward and reverse primers, 100 ng
of DNA, and 0.02 U/mL Phusion polymerase (Finnzyme). The
reaction was then cycled with the following conditions: initial
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denaturation at 98°C for 30 sec; seven cycles at 98°C for 5 sec, 70°C
for 15 sec, and 72°C for 30 sec; 30 cycles at 98°C for 5 sec, 65°C
for 15 sec, and 72°C for 30 sec; final extension at 72°C for 5 min.
PCR products was purified using AMPure SPRI magnetic beads
(Beckman). Samples were sequenced by Sanger chemistry by Eton
Biosciences and all variants were manually called by visual in-
spection.

Genotyping of 21 SNPs

Twenty-one SNPs (selected from dbSNP to represent a range of
minor allele frequencies) from the 200-kb region on chromosome
9p21 were genotyped using the Sequenom MassARRAYplatform in
48 individuals. PCR assays and extension primers for these SNPs
were designed using the MassARRAY Assay Design software, ver-
sion 3.1 (Sequenom). SNPs were genotyped using the iPLEX Gold
assay, based on multiplex PCR followed by a single base primer
extension reaction. The mass of the primer extension products,
correlating to genotype, as determined using matrix assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spec-
trometry. Final genotypes were called using the MassArray Type,
version 4.0.

SNIP-Seq implementation and download

The SNIP-Seq method has been implemented in python and is
available for download from the Supplemental material and also
from the website http://polymorphism.scripps.edu/;vbansal/
software/SNIP-Seq/. It accepts read alignments in the generic SAM
format from which it creates pileup files for each sequenced sam-
ple. The input files to SNIP-Seq consist of a set of pileup files and it
outputs the list of detected SNPs and a genotype for each sample.
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