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at the TNFAIP3 locus using functional and
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Genome-wide association studies have associated thousands of genetic variants with com-

plex traits and diseases, but pinpointing the causal variant(s) among those in tight linkage

disequilibrium with each associated variant remains a major challenge. Here, we use seven

experimental assays to characterize all common variants at the multiple disease-associated

TNFAIP3 locus in five disease-relevant immune cell lines, based on a set of features related to

regulatory potential. Trait/disease-associated variants are enriched among SNPs prioritized

based on either: (1) residing within CRISPRi-sensitive regulatory regions, or (2) localizing in a

chromatin accessible region while displaying allele-specific reporter activity. Of the 15 trait/

disease-associated haplotypes at TNFAIP3, 9 have at least one variant meeting one or both of

these criteria, 5 of which are further supported by genetic fine-mapping. Our work provides a

comprehensive strategy to characterize genetic variation at important disease-associated

loci, and aids in the effort to identify trait causal genetic variants.
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Genome-wide association studies (GWAS) have revealed
>100,000 associations of genetic variants with human
traits and diseases (e.g. autoimmune disease), but it

remains a challenge to pinpoint the causal variant(s) that account
for the association by altering disease risk and determine their
functions1–4. This is because they are often in tight linkage dis-
equilibrium (LD) with non-causal variants and, in the vast
majority of cases, lie in non-coding regions, where it is more
challenging to predict the impact and relevant context of variants.

Most causal variants in the non-coding genome are likely to act
through altering transcript abundance in a disease-relevant con-
text. In the relevant context (cell type, tissue source, stimulation,
genetic background, and disease status), experimental assays could
be used to characterize the relationship between genetic variants
and gene regulation. However, there are several challenges in this
strategy. First, one or more aspects of the relevant context may be
unknown. Second, even in the relevant context, there are many
possible impacts of non-coding variants (such as different effects
on gene expression or isoform usage), and each would involve a
separate experimental assay, highlighting different features. Third,
although ideally the relationship would be tested by allelic sub-
stitution in the relevant context—for instance, by CRISPR-
directed base editing or homologous recombination5–8, this
approach is difficult to scale at present. As a result, various assays
have been proposed for identifying potentially causal variants,
based on the variant’s relation to or impact on different molecular
features in a relevant cell type.

These assays can be categorized into four classes, depending on
(i) whether they involve observations of natural systems or
engineered experimental perturbations and (ii) whether they
pertain to a region or an individual variant.

(1) Observational assays that characterize the genomic region
in which the variant resides. Examples include using
ATAC-seq, DNase-I-seq, and H3K27ac ChIP-seq1,4,9,10, as
well as testing whether the variant lies in spatial proximity
to a target gene, based on topological assays such as 4C or
HiC11,12.

(2) Observational assays that characterize the impact of
naturally occurring genetic differences at the variant.
Examples include characterizing whether the variant shows
allele-specific association with expression of one or more
nearby genes or with local chromatin features (that is, an
expression quantitative trait locus (eQTL) or a chromatin
QTL, respectively), or whether the variant disrupts a
transcription factor (TF) motif.

(3) Engineered perturbational assays that test the impact of the
genomic region containing the variant. Examples include
assaying the effect of CRISPR-directed inhibition (e.g.,
CRISPRi13) and activation (e.g., CRISPRa14) of the region
on the expression of nearby genes or on chromatin
organization.

(4) Engineered perturbational assays that test the impact of the
variant itself. Examples include testing allele-specific
enhancer activities in massively parallel reporter assays
(MPRAs) and related methods15–18.

These assays have been used in previous studies to suggest
particular genetic variants as more likely to impact disease risk.
However, we do not know the extent to which each of these
assays actually enriches for causal variants.

Here, we reason that assays that usefully prioritize disease-
causal variants could be recognized by testing whether they
effectively enrich for disease-associated variants among all var-
iants across a region. However, because disease causal variants for
most associations are unknown, we use disease-associated var-
iants (which are known and highly enriched for causal variants).

As a proof of concept, we optimize and apply seven assays to
characterize all known common genetic variants in the TNFAIP3
locus, a genetic locus associated with multiple autoimmune dis-
eases19, and where disease-associated genetic and epigenetic fea-
tures have been studied extensively20–24. We use cell lines derived
from T cells, B cells, and monocytes (U937 or THP-1 monocyte
cell lines, GM12878 or BJAB B cell lines, or Jurkat T cell line),
representing three major cell lineages that can impact auto-
immunity. We find that two criteria are correlated with sig-
nificant enrichment for the subset of SNPs that show disease/
trait-association and, by inference, the subset of SNPs that play a
causal role in these associations. These two criteria are: (i) loca-
lization within CRISPRi-sensitive regions in one of the cell types,
or (ii) localization within open chromatin regions while also
showing allele-specific reporter activity by MPRA. We find SNPs
that fulfill at least one of these two criteria in 9 of 15 disease/trait-
associated TNFAIP3 haplotypes, prioritizing 18 putatively causal
SNPs in the locus associated to 15 diseases. By contrast, several
other criteria showed no enrichment for disease/trait association.
Our results highlight the limitations of using individual assays for
implicating a variant as potentially functional, and suggests that a
combination of assays, cell types and context will be needed to
prioritize variants at disease loci.

Results
The TNFAIP3 locus harbors 15 independent disease associa-
tions. As a test case, we investigated the TNFAIP3 locus because it
has strong associations to many autoimmune diseases. TNFAIP3
encodes the A20 protein, which is upregulated by NF-kB upon
immune stimulation, and dampens pathways that activate NF-kB
in a negative feedback loop (Fig. 1a)19,25,26. At least 49 GWASs
have identified genome-wide significant SNPs in the TNFAIP3
locus that together are associated with 16 human diseases and
phenotypes, including lupus (SLE), rheumatoid arthritis (RA),
psoriasis, inflammatory skin disorder (ISD), celiac disease,
inflammatory bowel disease (IBD), and multiple sclerosis (MS).
Rather than focusing only on disease-associated SNPs (that is,
those showing genome-wide-significant associations for one of
these diseases as tag SNPs or in tight LD to them), we system-
atically examined all common SNPs (MAF > 0.01) in the ~300 kb
topologically associating domain (TAD) containing TNFAIP3
(based on HiC data from GM12878 B cells and THP-1 monocyte
cell lines12,27), and 150 kb on either side of the TAD because it is
known that regulatory regions can affect the expression of genes
outside of TADs28 (Fig. 1b, top; Supplementary Fig. 1). We rea-
soned that studying all common non-coding variants would allow
us to derive empirical null distributions for each assay because
most variants are not expected to be functional. Accordingly, we
selected for analysis all 2776 common variants with minor allele
frequency > 0.01 in East Asian or European populations (in 1000
Genomes, see “Methods” section).

We next analyzed the locus to estimate the number of SNPs
that contribute to disease. Of the 2776 variants, 294 were in tight
LD (r2 > 0.8) to at least one of 34 ‘tag SNPs’—that is, a SNP
reported as having the highest association score in one of the
GWASs for the autoimmune and other diseases noted above
(Fig. 1c; Supplementary Fig. 2a). Through LD analysis (r2 ≥ 0.8)
of the tag SNPs, we identified 15 independent haplotypes
associated with one or more GWAS traits in Europeans (Fig. 1d;
Supplementary Fig. 2b–d); three of these haplotypes also
overlapped East Asian disease-associated haplotypes, but with
slight differences in the associated SNPs (Fig. 1d; Supplementary
Fig. 2d). Notably, fine-mapping of immune-related UK Biobank
phenotypes (autoimmune disease (self-reported or diagnosed),
self-reported allergy, and eosinophil counts) showed that, despite
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limited sample size, all but two of these separately fine-mapped
alleles were contained on three of the 15 disease-associated
haplotypes from our LD analysis (Supplementary Data 1, 2, see
“Methods” section). Collectively, we estimate that at least 15 SNPs
in the locus contribute to disease.

While TNFAIP3 is likely to play a role in many disease-relevant
cell types, we chose to study T cells, B cells, and monocytes. These
important innate and adaptive immune cell types likely play a

role in the autoimmune diseases with which the TNFAIP3 locus is
associated because their localization in disease-associated tissues,
signaling, and function are correlated with disease progression in
the clinic and in animal models of disease29–34. T cell-, B cell-,
and monocyte-specific accessible chromatin and active histone
marks (H3k27ac and H3K4me3 ChIP-seq) are also significantly
enriched (compared to other cell types) for GWAS variants (P <
1 × 10−8) from studies of diseases that had associations in
TNFAIP3 according to stratified LD score regression35 (Fig. 1e;
Supplementary Fig. 3a–c). Moreover, deleting TNFAIP3 in these
cell types causes systemic autoimmunity in mice36–40.

We studied cell lines derived from these cell types: THP-1 and
U937 for monocytes, BJAB and GM12878 for B cells, and Jurkat
for T cells. The chromatin accessibility profiles of these cell lines
are enriched for autoimmune-associated risk variants similarly to
the corresponding primary cells (Supplementary Fig. 3d), and
among blood cell types profiled by ATAC-seq20 they were most
similar to the cell type they represent (Supplementary Fig. 4a),
especially at the TNFAIP3 locus (Supplementary Fig. 4b),
suggesting that the selected cell lines could serve as models for
these cell types.

A panel of assays to annotate genetic variation. We used both
observational and perturbational assays to characterize regulatory
features in the regions where variants were located, and the
variants themselves (Fig. 2).

Using observational assays, we first analyzed regions that
contact the TNFAIP3 promoter (primary T cell and GM12878 B
cell HiChIP data; ~5 kb resolution41) and regions of accessible
chromatin in any of the cells lines (using ATAC-seq in
unstimulated and stimulated cells (Supplementary Fig. 5a, b),
and publicly available DHS of cell types from the blood42). For
each variant, we also assessed whether it lies within a region
bound by a TF based on ChIP-seq42, and whether the variant is
predicted to affect TF binding according to its cognate motif
(Supplementary Fig. 5c).

Using perturbational assays, we sought to identify regions that
can affect TNFAIP3 expression. With CRISPRi (in which KRAB-
dCas9 binds to a region targeted by a guide RNA and represses
chromatin locally13), we identified regions whose inhibition alters
TNFAIP3 expression. We targeted all regions with accessible
chromatin in either U937, BJAB, or Jurkat cell lines, tiled guides
across each element (and up to 100 bp on either side), and
identified guides and regions that significantly repress TNFAIP3
expression (see the “Methods” section; Supplementary Fig. 6,

Fig. 1 Disease variants in the complex autoimmune-associated TNFAIP3
locus. a TNFAIP3 encodes the A20 protein, which forms part of a negative
feedback loop to dampen NF-kB-mediated immune activation. b HiC plots
for the lymphoblastoid B cell line GM12878, with color intensity
proportional to the interaction frequency between genomic coordinates (x-
axis). Boxes indicate the 300 kb high-interaction domain and the 605 kb
region used in this study. c, d Genetics of the TNFAIP3 locus. The positions
(shared x-axis indicated above c) of variants with respect to the TNFAIP3
gene and a lncRNA (LOC100130476). c GWAS tag SNPs (red) and SNPs in
tight LD (greyscale boxes indicating LD to tag SNP) for many immune-
related phenotypes (y-axis). d GWAS haplotypes defined by combining all
SNPs in tight LD (r2 > 0.8) to GWAS tag SNPs for European (CEU; top) and
East Asian (CHB/JPT; bottom) populations. Colors are used to help identify
shared haplotypes between CEU and CHB/JPT populations. e Autoimmune
GWAS signals are enriched in open chromatin of immune cells. Heritability
enrichment (color) of disease-associated SNPs in DHS of various tissues
(x-axis) for seven autoimmune diseases (y-axis), according to LD-score
regression. Also see Supplementary Data 1, 2.
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Supplementary Data 4–6). We also applied CRISPRa (which relies
on dCas9-VP64 with MS2 stem loops that recruit HSF1 and p65
to artificially activate gene expression14), using guides that target
50 bp regions surrounding each variant in the TNFAIP3 locus to
identify regions with the potential to induce TNFAIP3 expression
(Supplementary Fig. 7, Supplementary Data 5–7). For shared
guides and regions, we confirmed that CRISPRi and CRISPRa
drove the expected opposing changes in expression of TNFAIP3
(Supplementary Fig. 7d, e). We also tested for allele-specific
reporter expression induced by individual variants using MPRAs.
We synthesized all alleles for each variant, centered in 150 bp of
the surrounding reference DNA. These were cloned upstream of
the TNFAIP3 promoter driving the expression of a GFP gene that
contained sequence barcodes in the 3′ UTR. We used these
barcodes to read out expression of each allele by RNA-seq. We
delivered them to immune cell lines by either lentivirus
(L-MPRA) to integrate them into chromosomes, or transfection
(T-MPRA) to generate extrachromosomal reporters (Fig. 2;
Supplementary Fig. 8, Supplementary Data 8, 9). Variant-driven
expression of the reporter was reproducible within, but not
between, the two delivery methods (Supplementary Fig. 8b).

For each assay, we determined which SNPs scored as ‘hits’
based on SNPs being within regions annotated as: (i) interacting
with the TNFAIP3 promoter by HiChIP; (ii) accessible by ATAC-
seq/DHS; (iii) within a region that modulates TNFAIP3 expression

based on CRISPRi/CRISPRa; or (iv) displaying allele-specific
reporter activity using MPRA (see the “Methods” section).

Hits from two strategies enrich for disease-associated SNPs.
Ideally, we would assess each assay by directly testing how well it
enriches for causal variants among the full set of variants assayed.
However, using metrics like ‘precision’ and ‘recall’ would require
that the causal variants be known with certainty. Because they are
not, we instead tested how well the methods enrich for variants in
tight LD with the tag SNP (as these variants are in turn enriched
for true causal variants), calculating a ‘pseudo-precision’ and
‘pseudo-recall’. For each assay, we therefore quantified (1) the
number of tested SNPs considered ‘hits’ in the assay (nH), (2) the
number of tag SNPs for which at least one SNP in tight LD was
tested in the assay (nT; i.e. recoverable tag SNPs), and (3) the
number of tag SNPs for which at least one SNP in tight LD was
considered an assay hit (nTH; i.e. recovered tag SNPs) (Supple-
mentary Fig. 9a). We next calculated the pseudo-precision and
pseudo-recall for GWAS variants for each assay. Here, we define
‘pseudo-precision’ as nTH/nH, representing the fraction of all
SNPs considered hits that are recovered tag SNPs, and ‘pseudo-
recall’ as nTH/nT, representing the fraction of tag SNPs that
are recovered by being in tight LD with one or more hits. These
terms are similar to precision and recall except that a single causal
SNP might underlie multiple tag SNPs (by being in tight LD to
each of them), making a pseudo-precision above 1 possible. By
these measures, a highly effective approach would recover all tag
SNPs (pseudo-recall= 1) with as few SNP hits as possible (high
pseudo-precision). In the calculation of pseudo-precision and
pseudo-recall, we did not consider GWAS tag SNPs that had no
assayed variants in tight LD with that tag SNP (including the tag
SNP itself) in order to not falsely penalize the assays for technical
failures (e.g., lack of PAM site for CRISPR or poor coverage in
MPRA). We conducted these analyses for all variants and for the
subset of variants that lie in accessible chromatin in one of the
three blood cell types studied (because GWAS variants are enri-
ched in accessible chromatin1,4 and accessibility data is readily
available for many cell types) (Fig. 3a, b).

To determine whether the pseudo-precision/pseudo-recall
performance of each method is better than expected by chance,
we created an empirical null distribution by randomly permuting
the hit status among the assayed SNPs (1000 permutations) or by
shifting the hit status of each SNP to the next adjacent assayed
SNP (Supplementary Fig. 9b, c). The shift approach preserves
positional clustering of hits inherent to LD and to some of the
assays (e.g. CRISPRi, open chromatin). This reduces inflation of
positive hits within the null that may occur by permutation,
where the permuted hits may be in LD with many more tag SNPs
than are possible given the clustered nature of the assay (thus
increasing pseudo-precision and pseudo-recalls) (see the “Meth-
ods” section). Both shifting and permutation yielded similar
results for SNPs in tight LD with GWAS tag SNPs (Fig. 3c,
Supplementary Fig. 9d). For each method, we compared the
pseudo-precision and pseudo-recall of actual data to the null
distribution. We did this both for all variants (Fig. 3c) and the
variants located in accessible chromatin in the three blood cell
types (Fig. 3d).

Relative to all variants, most of the methods (ATAC-seq on our
cell lines, Blood DHS+ATAC-seq on our cell lines, TF ChIP+
motif, L- and T-MPRA, and CRISPRa) did not show a significant
enrichment for GWAS variants (Fig. 3c). However, CRISPRi
showed 7.5-fold enrichment for GWAS variants (95% C.I.,
[0.9375; ∞]), albeit not significant (P= 0.087, empirical P-value
with genomic-shifts null) (Fig. 3a, c, Supplementary Fig. 9a).
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Genomic assays (left), the coverage of all common genetic variants in the
605 kb locus (middle), and whether the assay is specific to genomic regions
or variants (right), grouped into observational (top) and perturbational
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regions (H3K27ac labeled) that interact with the TNFAIP3 promoter. (2)
DHS and ATAC-seq can be used to identify regions of accessible
chromatin. (3) Variants predicted to alter TF binding can be identified using
motif analysis in combination with evidence of TF binding by ChIP-seq42.
Also see Supplementary Data 3–9. (4 and 5) Pooled CRISPRi and CRISPRa
screens can determine regulatory potential of each region by repressing
(CRISPRi) or artificially inducing (CRISPRa) each targeted region. (6 and 7)
MPRA (with lentiviral or transfection delivery strategies) can be used to
test for allele-specific reporter expression.
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After restricting our analysis to variants located in accessible
chromatin in the three blood cell types, several of the methods
(CRISPRa and TF ChIP+motif) again showed no significant
enrichment for GWAS variants. However, T-MPRA showed
significant enrichment (P= 0.011, empirical P-value with
genomic-shifts null; 1.44-fold enrichment for GWAS, 95% CI
[1.04; 5.2]; Fig. 3d, Supplementary Fig. 9e).

Both L-MPRA and T-MPRA showed greatly increased pseudo-
precision with only marginally reduced pseudo-recall when
restricting attention only to variants in accessible chromatin
(Fig. 3d, Supplementary Figs. 9e and 10). This may be because
many variants have the capacity to alter expression when tested in
an enhancer assay (such as MPRA), but do not reside in a region
of accessible chromatin in the relevant cell types and thus do not
alter disease risk. Although L-MPRA performed well for variants
in accessible chromatin, having the highest pseudo-precision of
any assay, there was limited power to evaluate L-MPRA because
only four variants (in tight LD to 15 tag SNPs) out of the 19
L-MPRA hits were in accessible chromatin (P= 0.128, empirical
P-value with genomic-shifts null; Fig. 3d).

For CRISPRi, pseudo-precision and pseudo-recalls changed
little when focusing only on variants in accessible chromatin
(Fig. 3a–d, Supplementary Fig. 10), but pseudo-precision was
less significant (P= 0.215, empirical P-value with genomic-shifts
null) because some of the SNPs tested lay just outside (within
100 bp) regions of accessible chromatin (Fig. 3c, d, Supplemen-
tary Fig. 9d, e).

We also considered another alternative proxy for causal variants,
using credible sets from fine-mapping studies (Supplementary

Data 10), determining, in this case, the number of credible sets (nT')
that were recovered (nTH') by containing one or more assay hits
(nH). Although the SNPs in a credible set are more likely to be
causal than when doing LD expansion, the limited availability of
fine-mapping data restricted this analysis and reduced our
statistical power. We calculated the pseudo-precision and pseudo-
recall for GWAS variants for each assay in an analogous way
(Supplementary Fig. 9f–k). The rates from the credible set-based
analysis generally showed similar trends to the tag SNP approach,
but were less significant due to the reduced sample size (Fig. 3c, d
vs. Supplementary Fig. 9d–k); in addition, pseudo-precision was
necessarily reduced for fine mapping due to reduced number of
association signals, but with no change in assays hits.

Prioritization of variants in disease-associated haplotypes.
Finally, we used our analysis of genomic assays to prioritize SNPs
on each disease-associated haplotype (Fig. 4, Supplementary
Data 3). We annotated as high-priority those variants that were
hits in at least one of the two assays with the best performance
(CRISPRi for all variants and T-MPRA variants in accessible
chromatin), finding a total of 18 such high-priority variants (Fig. 4,
asterisks). Of the 15 disease-associated haplotypes, nine included
one or more of these 18 SNPs. These included five SNPs that had
been fine-mapped in the UK Biobank, lying in 95% credible sets
representing associations with allergy, all autoimmune diseases
combined, and eosinophil counts (Fig. 4, Table 1).

Several of these high-priority variants had other evidence
supporting a role in disease. For example, rs6927172 is the only
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high-priority variant on haplotype 6 (which lay in accessible
chromatin and scored in the T-MPRA assay, but not in the
CRISPRi assay); this variant is associated with many diseases,
including RA, SLE, celiac, T1D, and asthma, and it is a fine-
mapped SNP in our analysis of combined autoimmune disease in
the UK Biobank and in previously reported studies of ulcerative
colitis, RA, and celiac)1 (posterior inclusion probability (PIP)=
0.1343; Table 1, Supplementary Data 2). This variant also has
evidence of allele-specific ATAC-seq and allele-specific ChIP-seq
for the TFs NF-kB and JunD in lymphoblastoid cell lines44,45 and
allele-specific ATAC-seq and allele-specific ChIP-seq for the NF-
kB1 p50 subunit in primary CD4 T cells20. It appears to interact
with the TNFAIP3 promoter by 3C, has allele-specific reporter
activity according to a luciferase assay, and lays in a region that
affected TNFAIP3 expression based on 11–12 bp CRISPR-
induced deletions46,47. Only two of the other 10 variants on the

haplotype had evidence of impact (with rs111710107 only being
in accessible chromatin, and rs111231590 having allele-specific
reporter activity according to both T- and L-MPRA assays).

Similarly, rs643177 is one of two high-priority variants on
haplotype 9 (laying in accessible chromatin and a hit in T-MPRA
assay, but not tested in CRISPRi due to the lack of a suitable
guide-RNAs). This variant also had evidence of interaction with
the TNFAIP3 promoter according to HiChIP, and had allele-
specific reporter expression in L-MPRAs. rs643177 is a fine-
mapped psoriasis SNP1 and has evidence of allele-specific binding
of the TF Pou2f1 (Table 1). The other high-priority variant on
haplotype 9 is rs559766217, which was a hit in the CRISPRi assay,
is in accessible chromatin and contacts the TNFAIP3 promoter
according to HiChIP. Four of the 17 other SNPs on the haplotype
have some evidence of impact (including rs538522 and rs598493,
which interact with the TNFAIP3 promoter according to HiChIP;
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rs598493 and rs610604, which are located in accessible chroma-
tin; and rs6909442, which has allele-specific reporter expression
according the T-MPRA assay).

Other examples include rs11758213 on haplotype 15, which is
in the 95% credible set for ulcerative colitis (PIP= 0.0074)48 and
had evidence of allele-specific ATAC-seq and ChIP-seq for the TF
JunD in LCLs44,45 and rs1002658 on haplotype 14, which was
associated with celiac disease and had evidence of allele-specific
ATAC-seq and ChIP-seq for the TFs NF-kB and PU.144,45.
Interestingly, haplotype 2 had 41 of 51 SNPs that scored as hits in
at least one of the seven assays, including five SNPs in accessible
chromatin that score as hits in the T-MPRA assay and three SNPs
that scored as hits in the CRISPRi assay (Table 1).

Discussion
GWASs effectively narrow down the search for causal variants to
a small set of candidates, but determining which of the candidates
contributes to disease risk remains a challenge. Because disease-
causal variants are likely to be correlated with functionally rele-
vant genomic features in the cell types in which they act, it should
be possible to use genomic features to help inform the search for

disease-associated variants—provided that the relevant cell types
are known and can be studied (which remains a serious
limitation).

To study the potential utility of various genomic features for
prioritizing non-coding variants, we studied seven genomic assays
in three disease-relevant cell types to assess to the extent to which
they enrich for disease-associated variants within a set of 2776
common non-coding SNPs in the TNFAIP3 locus. We found
significant enrichment among high-scoring SNPs for two meth-
ods: (1) variants present in CRISPRi-responsive regulatory
regions and (2) variants present in accessible chromatin that also
showed allele-specific reporter activity by T-MPRA. These two
criteria identified 18 TNFAIP3 variants associated with 15 dis-
eases on 9 haplotypes; potential functional roles for these variants
in immunity were supported by additional published data (such
as allele-specific ATAC-seq, ChIP-seq, and genetic fine-map-
ping). By contrast, the other genomic features did not provide
significant enrichment.

Our data support two prioritization schemes (CRISPRi and
accessible chromatin with T-MPRA) as viable methods for
enriching for causal variants in the TNFAIP3 locus. However,
since perturbational methods (e.g. CRISPRi, MPRA) cannot

Table 1 Disease-associated variants positive for CRISPRi or chromatin accessibility with T-MPRA.

SNP ID Associated trait Tehranchi
asATAC

Tehranchi
asChIP

Fine mapped UKBB
95% CS (SuSiE)

Other evidence Haplotype Hit in assays

rs200820567 Allergy, ISD, RA, SLE, eosinophil
counts, IgA deficiency, Sjogren’s

x Eosinophil counts (PIP=
0.03); Allergy (PIP=
0.04)

Fine mapped in Adrianto et al.
(SLE)

2 T-MPRA+ accessible
chromatin

rs148314165 Allergy, ISD, RA, SLE, eosinophil
counts, IgA deficiency, Sjogren’s

Fine mapped in Adrianto et al.
(SLE)

2 T-MPRA+ accessible
chromatin

rs112497003 Allergy, ISD, RA, SLE, eosinophil
counts, IgA deficiency, Sjogren’s

Eosinophil counts (PIP=
0.01)

2 T-MPRA+ accessible
chromatin

rs111883038 Allergy, ISD, RA, SLE, eosinophil
counts, IgA deficiency, Sjogren’s

Eosinophil counts (PIP=
0.01)

2 L-MPRA+ accessible
chromatin; T-MPRA
+ accessible
chromatin

rs6927172 Celiac, IBD, RA, Asthma, IgA
deficiency, Sjogren’s, ISD, T1D,
primary biliary cirrhosis

x NF-kB,
JunD

Combined Autoimmune
(PIP= 0.13)

Fine mapped in Huang et al.
(UC, PIP= 0.06); Farh et al.
(RA, PIP= 0.11; Celiac, PIP=
0.19; UC, PIP= 0.23);
Westra et al. (RA, PIP= 0.10)

6 T-MPRA+ accessible
chromatin

rs643177 ISD, psoriasis Pou2f1 Fine mapped in Farh et al.
(Psoriasis, PIP= 0.15)

9 L-MPRA+ accessible
chromatin; T-MPRA
+ accessible
chromatin

rs59086769 Urine metabolites 5 T-MPRA+ accessible
chromatin

rs1002658 Celiac x NF-kB,
PU.1

14 T-MPRA+ accessible
chromatin

rs11758213 MS x JunD Fine mapped in Huang et al.
(UC, PIP= 0.075)

15 T-MPRA+ accessible
chromatin

rs9389527 MS 15 T-MPRA+ accessible
chromatin

rs12201430 Blood metabolites x 4 T-MPRA+ accessible
chromatin

rs12192746 Blood metabolites 4 L-MPRA+ accessible
chromatin; T-MPRA
+ accessible
chromatin

rs34654849 MS, IgA deficiency, RA 1 T-MPRA+ accessible
chromatin

rs73558137 MS, IgA deficiency, RA 1 T-MPRA+ accessible
chromatin

rs5029924 Allergy, ISD, RA, SLE, eosinophil
counts, IgA deficiency, Sjogren’s

BJAB asATAC and fine
mapped in Farh et al. (SLE,
PIP= 0.09)

2 CRISPRi

rs5029926 Allergy, ISD, RA, SLE, eosinophil
counts, IgA deficiency, Sjogren’s

2, 3 CRISPRi

rs10499197 Allergy, ISD, RA, SLE, eosinophil
counts, IgA deficiency, Sjogren’s

2 T-MPRA+ accessible
chromatin; CRISPRi

rs58905141 Allergy, ISD, RA, SLE, Eosinophil
Counts, IgA deficiency, Sjogren’s

Eosinophil counts (PIP=
0.02)

2 L-MPRA+ accessible
chromatin; CRISPRi

rs559766217 ISD, Psoriasis 9 CRISPRi

Variants that are positive for either chromatin accessibility with T-MPRA or CRISPRi are listed with their associated trait, and whether they were also positive in Tehranchi et al. as having allele-specific
ATAC (asATAC) or asChIP-seq for TFs in LCLs. Our fine-mapping data using UKBB traits for the 95% credible set variants are included, and other fine-mapping data or evidence for SNP functionality is
listed in Other Evidence. The haplotype for the SNP is listed in Haplotype.
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currently be scaled to the same level as observational methods
(ATAC-seq, ChIP-seq, HiChIP, and TF motif analysis), we could
not test the generalizability of our findings to additional disease-
associated loci, variants, and cell types.

Our focus on the TNFAIP3 locus helps to clarify a complex
region with many genetic associations through analysis of variant
features and functions in three main immune cell types. While our
data corroborated two reported putatively causal variants asso-
ciated with lupus (rs200820567 and rs148314165 on haplotype 2),
it highlighted six other variants (rs58905141, rs10499197,
rs5029924, rs5029926, rs112497003, and rs111883038) on the same
haplotype that are also putatively causal. Whether these variants act
in concert to confer risk at this haplotype needs to be examined.
While we found prioritized variants for nine haplotypes, none were
found for another six haplotypes, which could be explained by lack
of assay sensitivity or the variants being biologically active in other
cell types and conditions. Interestingly, many haplotypes contained
associations to different diseases, affirming that different auto-
immune diseases could have similar autoimmune genetic etiology
because they are presumably promoting disease through the same
causal genetic variants1. Our data help explain the immense genetic
complexity of the locus by prioritizing 18 of the 293 disease-
associated variants, although there may be even more disease-
causal variants to be found in different contexts.

Our study of common variants in the TNFAIP3 locus provides
a strategy to help guide future variant characterization studies at
other loci. Increasingly accurate approaches to identify causal
variants will require the development and integrated analysis of
experimental methods that assess variant function.

Methods
Cell culture and stimulation of immune cells. BJAB (DSMZ, cat. no. ACC 757),
Jurkat, Clone E6-1 (ATCC, cat. no. TIB-152), U937 (ATCC, cat. no. CRL-1593.2),
THP-1 (ATCC, cat. no. TIB-202), and GM12878 (Coriell, cat. no. GM12878 LCL
from B-Lymphocyte) cell lines were cultured using RPMI 1640 (ThermoFisher,
21870092) containing 10% fetal bovine serum (FBS, VWR, 97068-091; 20% for
GM12878) with 1% Penn/strep (VWR, 45000-652), 1% L-glutamine (Thermo-
Fisher, 25030081), and 1% HEPES (Sigma, H0887-100ML). Cells were maintained
at a culture density between 100K and 1M cells/mL. Jurkat T cells were stimulated
with 2.5 μg/mL of anti-CD3 (Biolegend, 317304) and 10 ng/mL of PMA (Sigma,
P1585-1MG) for 1 h prior to harvesting for CRISPRi and MPRA, and 1 and 4 h for
ATAC-seq experiments. BJAB and GM12878 B cells were stimulated with
2.5 μg/mL of anti-IgM (Sigma-Aldrich, 86620270) and 2 μg/mL anti-CD40
(ThermoFisher, 14-0409-82) for 2 h for CRISPRi and MPRA, and 1 and 4 h for
ATAC-seq and 4C (BJAB) experiments. THP-1 and U937 monocytes were sti-
mulated with 100 ng/mL LPS (Invivogen, tlrl-peklps) for 2 h for CRISPRi and
MPRA, and 1 and 4 h for ATAC-seq and 4C (U937) experiments.

Lentivirus preparation. HEK293T cells were grown using DMEM (VWR, 45000-
316) with 10% FBS, 1% Penn/Strep, 1% L-glutamine, 1% HEPES (10DMEM). Cells
were passaged at 80% confluence for each passage. To make lentivirus, media was
aspirated from the adherent cells and Trypsin EDTA 0.25% (VWR, 45000-664) was
used to create a single-cell suspension; the cells were kept at 37 °C for 4 min with
Trypsin, and 10DMEM was added to a final concentration of 80%. The cells were
pipetted up and down until they were in a single cell suspension. They were then
counted and plated in a six-well plate at 500K cells/well in 2 mL 10DMEM. The
next day, when the cells were ~70% confluent, they were transfected. pVSV-G
(0.1 μg; Addgene, 8454), pPAX2 (1 μg; Addgene, 12260), and the donor plasmid
(1 μg), were added to 125 μL of OPTI-MEM and mixed. 6 μL of the TransIT-LT1
(Mirus Bio, MIR 2300) transfection reagent was added to a separate tube of 125 μL
OPTI-MEM (ThermoFisher, 31985062) and mixed. The OPTI-MEM LT-1 mixture
was then added to the OPTI-MEM plasmid mixture, mixed, and incubated at RT
for 15 min. The mixture was then added dropwise to the well. The plate was then
swirled in order to ensure distribution of the mixture and effective transfection.
The cells were put at 37 °C to incubate overnight and the media was changed at
24 h post-transfection, this time using 10DMEM with 1% BSA (Sigma, A7979). The
cells were then incubated at 37 °C for 16 h, and the supernatant was harvested. The
viral supernatant was spun at 500 × g for 5 min to separate cellular debris, and
stored at 4 °C for up to 3 months.

1000 Genomes Project and GWAS catalog. We centered our study on the 2776
variants that lie within and 150 kb to either side of the TNFAIP3 TAD, yielding a
605 kb locus (MAF > 0.01, combined CHB+JPT and CEU populations from phase

3 of the 1000 genomes project (http://www.internationalgenome.org/)). We used
tabix (0.2.5) (tabix -h ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
supporting/vcf_with_sample_level_annotation/ALL.chr6.phase3_-
shapeit2_mvncall_integrated_v5_extra_anno.20130502.genotypes.vcf.gz
6:137846078-138453052 > TNFAIP3.vcf)49 and vcftools (0.1.15) and Plink
(v1.90b3d; vcftools --vcfg TNFAIP3.vcf --keep CEU_names.txt --out CEU --plink;
plink --file CEU --out CEU; plink --bfile CEU --maf 0.01 --geno 0.01 --hwe 0.01
--out CEU.filtered --make-bed)50,51 to extract all alleles in the TNFAIP3 locus
(chr6:137846078-138453052, hg19) that were MAF ≥ 0.01 from the 1000 genomes
phase 3 database CEU and the combination of CHB and JPT populations. For trait-
associated variants, we reanalyzed GWAS summary statistics (www.immunobase.
org and refs. 52,53) for tag SNPs and those in tight LD in 1KG samples, according to
the same population in which the study was conducted (r2 > 0.8; 294 SNPs)54.

GWAS haplotypes were defined on the basis of tight LD between GWAS tag
SNPs and other genomic SNPs. We calculated LD between GWAS tag SNPs and
other SNPs using Plink (v1.90b3d; --r2 inter-chr --ld-window-r2 0.2) for both East
Asian (EAS) and European (CEU) populations using 1000 Genomes data54. Each
GWAS tag SNP and all SNPs in tight LD (r2 > 0.8) within the GWAS population of
study defined our initial haplotype estimates. Any of these haplotypes that shared
SNPs in tight LD (r2 > 0.8) were then merged into a single haplotype until none
showed any overlap, yielding 15 haplotypes associated with one or more diseases.
We found that the number of haplotypes identified was robust to this cutoff
between 0.76 and 0.89. Haplotypes identified in EAS and CEU that had any overlap
between the GWAS Tag SNPs were merged into a single haplotype, with
population-specific membership indicated in Fig. 1 and Supplementary Fig. 2, and
Supplementary Data 1. We used phased 1000 Genomes genotypes to ensure each
haplotype exists at >0.5% in each population.

Genetic fine-mapping. We performed genetic association and fine-mapping in up
to 361,194 unrelated, white British individuals from the UK Biobank55, as deter-
mined by the PCA-based sample selection criteria (https://github.com/Nealelab/
UK_Biobank_GWAS/blob/master/ukb31063_eur_selection.R). We restricted to all
imputed variants with MAF > 0.01% (except for missense and protein-truncating
variants annotated by VEP56, MAF > 0.0001%), Hardy–Weinberg equilibrium P-
value > 1 × 10-10, and imputation quality (INFO) > 0.8 (https://github.com/
Nealelab/UK_Biobank_GWAS). To perform association tests for binary pheno-
types, we used a generalized linear-mixed model as implemented in SAIGE57

v0.29.4 with the minimum minor allele count (MAC) threshold, MAC > 10 for
each GWAS. To perform association tests for quantitative phenotypes, we used a
linear-mixed model as implemented in BOLT-LMM58 v2.3.2 with default settings.
Phenotypes for combined autoimmune disease were derived as previously
defined58, allergy status was self-reported, and eosinophil counts were inverse rank-
based normal transformed. We included sex, age, age2, sex × age, sex × age2, and
top 20 principal components as covariates. Genetic fine-mapping was performed
using FINEMAP v1.359,60 and the summary statistics version of susieR43 v0.7.1
with the maximum number of causal variants specified as 10. LD matrices were
calculated from imputed dosages for individuals included in each GWAS using
LDstore61 v2.0b. Individual variant posterior inclusion probabilities and condi-
tional 95% credible sets are reported.

GWAS immune cell enrichments. Heritability enrichments of traits (Fig. 1;
Supplementary Fig. 3) in cell lines and cell types were estimated using stratified
LD-score regression (s-LDSC) over accessible chromatin or histone modifications
in specific cell types as previously reported35 by interpreting the cell type-specific
repression coefficient in s-LDSC model. For hematopoietic cell types and cell lines,
common variants overlapping accessibility peaks from ATAC-seq data for 13
primary cell types62 were used to compute the heritability enrichment. For broad
tissue enrichments, DNase Hypersensitivity peaks and H3K27ac and H3K4me1
ChIP-seq peaks were overlapped with common variants to compute heritability
enrichments. The −log10 P-values for the s-LDSC regression terms for each spe-
cific annotation were shown as a measure of enrichment.

HiChIP data and analysis. H3K27ac HiChIP data previously generated41 were
downloaded in.fastq format from GEO accession “GSE101498”. Biological and
technical replicates of Th17, Naïve T-cell, and GM12878 H3K27ac samples were
pooled and aligned with Hi-C Pro63. Virtual 4C plots (Supplementary Fig. 5) using
a resolution of 2.5 kb and a rolling mean of 2.5 windows41. Per-fragment estimates
of interaction strength to the TNFAIP3 promoter were generated using hichipper64

and normalizing to the total number of unique fragments in each library. We used
a normalized interaction score of 20 to annotate regions as TNFAIP3 interacting.

ATAC-seq. We used the FAST-ATAC protocol62. 10,000–20,000 cells were sorted
into RPMI 1640 containing 10% fetal bovine serum. The cells were centrifuged at
500 × g for 5 min at 4 °C. All of the supernatant was aspirated, ensuring that the
pellet was not disturbed. The pellet was then resuspended in the tagmentation
reaction mix (25 μL 2X TD Buffer (Illumina, 15027866), 2.5 μL TD Enzyme
(Illumina, 15038061), 0.5 μL 1% Digitonin (Promega, G9441), 22 μL H2O) and
mixed at 300 RPMs at 37 °C for 30 min on an Eppendorf Thermomixer. Imme-
diately after the incubation, samples were purified using a minElute kit (Qiagen,
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28006), eluting in 10 μL. The entire sample was PCRed (a 50 μL reaction with 25 μL
NEBNext, 2.5 μL F+R custom nextera primers (10 μM each; Supplementary
Data 11), 10 μL of tagmented DNA, and 12.5 μL H2O) for five cycles with the
following program (72 °C, 5 min; 98 °C, 30 s; five cycles of 98 °C, 15 s, 63 °C, 15 s,
72 °C, 1 min). We performed qPCR with 5 μL of the sample to determine the
number of additional cycles required, while the rest remained on ice. The 5 μl of
sample was added to a qPCR mix (5 μL of PCR, 5 μl of NEBNext, 0.5 μL F+R
custom nextera primers, 0.09 μL of 100X SYBR (Invitrogen, S7563), 4.41 μL H2O)
and qPCRed (98 °C, 30 s; 20 cycles of 98 °C, 15 s, 63 °C, 15 s, 72 °C, 1 min). The
number of cycles that it took to reach 1/3 the maximum fluorescence threshold in
the qPCR was then applied via PCR to the original PCR sample. Libraries were
cleaned using 1.5X Agencourt XP beads and ethanol washes per manufacturer’s
protocol. The DNA concentration of the sample was measured using Qubit and the
average fragment size was determined using a TapeStation. Samples were then
multiplexed and sequenced using 50 bp paired end chemistry at an average read-
count of 30M reads per sample.

Paired-end ATAC-seq reads were mapped to the genome (hg19) using Bowtie2
(2.2.1; parameters: --maxins 2000), with duplicate reads removed using Picard
(2.20.6; MarkDuplicates REMOVE_DUPLICATES=true), and peaks (clusters of
reads representing open chromatin regions) called using Homer (4.6; findPeaks
-style dnase).

We calculated the ATAC-seq similarity between our cell lines and primary
immune cell types20 (Supplementary Fig. 4). We used pyatac (version 0.3.4) to get
read counts for each region previously identified as having been accessible in one or
more immune cell types, for GM1287865, Jurkat, BJAB, and U937. Pearson’s
correlation coefficient was calculated comparing the log ATAC-seq counts (+0.5)
per region to quantify the similarity between each of the primary immune cells as
well as the other cell lines, for each profiled cell line. These were sorted in
decreasing order and the top five for each cell line are displayed in Supplementary
Fig. 4.

CRISPR screens. The guide libraries targeting the TNFAIP3 locus for CRISPRi
and CRISPRa are available in Supplementary Data 4 and 7. To design the guide
library, all possible 20 bp sgRNAs with the Cas9 protospacer adjacent motif NGG
within the region surrounding TNFAIP3 (chr6:13784700–138453100, hg19) were
considered. On-target scores for each guide were determined using the Rule Set 2
method described in ref. 66. To determine the number of off-target locations,
bowtie (0.12.7)67 was used to map guides to the human reference (hg19) with a
maximum 10,000 matches, with up to three mismatches (parameters: -n 3 -l 15 -e
10000 -y --all -S). Using this set of potential mapping locations in the genome, off-
target score was calculated using the method of Hsu et al.68. Briefly, single off
targets were calculated as e moves over positional mismatches between guide and
off-target, where the m is as below and d is mean pairwise distance between
mismatches:

Π
e2M

ð1�W½e�Þ ´ 1
ð19��dÞ

19 ´ 4þ 1
� � ´

1
n2mm

M ¼ 0; 0; 0:014; 0; 0; 0:395; 0:317; 0; 0:389; 0:079; 0:445; 0:508; 0:613;½
0:851; 0:732; 0:828; 0:615; 0:804; 0:685; 0:583�

Individual off-targets are aggregated into a single guide using:

Sguide ¼
100

100þPnmm
i¼1 ShitðhiÞ

On-target scores range from 0 to 100, with 100 being optimal. Off-target scores
range from 0 to 100 with 100 being no off-target effects predicted. CRISPRi guides
were selected to target the locations of ATAC-seq peaks from Jurkat, BJAB, or
U937—with or without stimulation (overlapping peaks merged), and aimed to tile
the region uniformly, with an average of ~30 guides per element. For CRISPRa, the
targeted elements were the locations of SNPs (±25 bp) and guides were selected to
get ~5 guides per SNP; most SNPs with at least one guide (2501/2776). In both
cases, we excluded guides for which there were off-target matches near the
TNFAIP3 locus, as well as any that had more than three off-target perfect matches
anywhere in the genome. We included 770 non-targeting guides in CRISPRa
library and 6282 in the CRISPRi library, which were created by reversing (but not
complementing) selected targeting guides. Prior to synthesis, Gs were added to all
sgRNAs not starting with a G to aid in transcription efficiency. The sgOPTI vector
(for CRISPRi; Addgene, 71409) or the sgSAM vector (for CRISPRa; made in house,
available upon request) was digested with BsmbI (NEB, R0580S) overnight, PCR
cleaned, and the digest was repeated for two hours with thermostable alkaline
phosphatase (Promega, M9910) added during the final hour of digestion. The cut
vector was then gel purified using a 0.7% agarose gel. Guides for CRISPRi and
CRISPRa (Supplementary Data 4, 7) were synthesized using Agilent Technologies
100K arrays, with common PCR priming sequences on each element. The oligos
were amplified to add Gibson assembly homology arms, and inserted into the
sgOPTI vector using Gibson assembly using 500 ng of vector and 70 ng of insert.
Lentivirus (protocol in methods above) was then made for all guide libraries and
CRISPR-associated vectors (see below). Stable CRISPRi-expressing GM12878,
BJAB, Jurkat, U937, and THP-1 cell lines and CRISPRa-expressing BJAB, Jurkat,

U937, and THP-1 were made through lentiviral transduction of these cells with a
doxycycline-inducible transactivator (ClonTech, 631363) and the TRE-dCas9-
KRAB-BFP construct (for CRISPRi; Addgene, 85449) or pMS2-p65-HSF1
(Addgene, 73795) and dCas9-VP64-GFP (for CRISPRa; Addgene, 61422); for
both, guide libraries were infected at an MOI < 0.3, and puromycin selected for
4 days. Cells containing libraries were maintained in culture without doxycycline
and used for each replicate. For each replicate, cells were split and given doxycy-
cline 24–48 h prior to harvesting, and stimulated with relevant ligands 1–2 h prior
to harvesting.

We performed FlowFISH screens69. For PrimeFlow experiments, 5 million cells
were aliquoted in PBS in polypropylene tubes and centrifuged at 500 × g for 5 min.
All but 100 μL of the supernatant was discarded (this step is true for every
centrifugation step in this protocol) and the cells were resuspended in the residual
volume. Cells were then fixed according to manufacturer protocol (ThermoFisher,
88-18005-210) using Fixation Buffer 1 for 30 min at 2–8 °C with rotating. Cells
were then centrifuged at 800 × g for 5 min. and the supernatant was discarded. Cells
were then permeabilized according to manufacturer protocol with addition of
RNase inhibitors through inversion, and centrifugation at 800 × g for 5 min, then
the supernatant was discarded. This step was repeated. A second fixation step was
carried out using Fixation Buffer 2 according to manufacturer protocol, the
samples were mixed, and inverted for one hour in the dark at RT. The cells were
then centrifuged at 800 × g for 5 min at RT, and the samples were washed twice
with PrimeFlow RNA Wash Buffer, centrifuging the samples at 800 × g between
each wash for 5 min. The TNFAIP3 target probe (ThermoFisher, VA1-20723) was
added at 1X in PrimeFlow RNA Target Probe Diluent, mixed thoroughly by
pipetting up and down (100 μL of probe/sample), and incubated at 40 °C for 2 h,
with inversion every 30 min. 1 mL of PrimeFlow RNA Wash Buffer was added to
each sample, the samples were inverted to mix, and centrifuged at 800 × g for
5 min, and the supernatant was aspirated. Samples were then washed with 1 mL
PrimeFlow RNA Wash Buffer containing RNase inhibitors twice followed by
centrifugation at 800 × g for 5 min. 100 μL of PrimeFlow RNA PreAmp Mix was
then added to each sample and briefly vortex to mix, and the samples were then
incubated for 1.5 h at 40 °C with mild vortexing once every 30 min. Samples were
washed three times with 1 mL of PrimeFlow RNA Wash Buffer, and they were
centrifuged at 800 × g for 5 min, and the supernatant was aspirated. 100 μL of
PrimeFlow RNA Amp Mix was then added to each sample, the samples were mixed
by votexing, and were incubated for 1.5 h at 40 °C with mild vortexing once every
30 min. The cells were then washed twice in 1 mL of PrimeFlow RNA Wash Buffer
and centrifuged at 800 × g for 5 min. Each sample received 100 μL of PrimeFlow
RNA Label Probe diluted in PrimeFlow RNA Label Probe Diluent and incubated
for 1 h at 40 °C with mild vortexing once at 30 min. Samples were then washed with
1 mL of PrimeFlow RNA Wash Buffer at RT followed by centrifugation at 800 × g
for 5 min. The samples were then washed five times with 35 °C PrimeFlow RNA
Wash Buffer following each wash with centrifugation at 800 × g for 5 min. Samples
were then left in 100 μL of PBS and stored in the dark at 4 °C until sorting.

Cells expressing CRISPRi or CRISPRa constructs along with sgRNA libraries
were sorted into six 10% bins, sorting on the extremes of expression (30% on either
the low or high portion of the expression distribution, each divided into three
contiguous bins each comprised of ~10% of the overall distribution). For each
experiment and cell type, between 300K and 1M cells were sorted per bin. Genomic
DNA for each sample was then reverse-crosslinked using ChIP Lysis Buffer (1%
SDS, 0.01 M EDTA, 0.05 M Tris–HCl pH 7.5). Briefly, sorted cells were spun at
800 × g for 10 min at 4 °C, the supernatant was aspirated, and the cells were
resuspended in 50 μL of ChIP Lysis Buffer, and incubated at 65 °C for 10 min. The
samples were then cooled to 37 °C and 2 μL of RNase Cocktail (ThermoFisher,
AM2286) was added to each sample and the sample was mixed well by pipetting,
followed by incubation at 37 °C for 30 min. 10 μL of Proteinase K (NEB, P8107S)
was added to each sample and the sample was mixed well by pipetting, followed by
incubation at 37 °C for 2 h and then 95 °C for 20 min. gDNA was extracted using
Agencourt XP beads at 0.7X following the manufacturers protocol, and the sample
was eluted at 100 μL. Libraries were prepared by PCR of each sample, splitting each
into four 50 μL reactions (25 μL NEB Next Master Mix, 2.5 μL barcoded sequencing
forward and reverse primers (Supplementary Data 11), 11.5 μL gDNA, and 11.5 μL
ddH2O; program: 98 °C for 30 s, 25 cycles of 98 °C for 15 s, 62 °C for 15 s, 72 °C for
16 s, then 72 °C for 2 min. The libraries were then gel purified using a 2% gel
(expected band size of 206 bp). Samples were sequenced aiming to get >1,000,000
reads per bin, on either an Illumina HiSeq 2500 or MiSeq using a custom
sequencing and index primers for CRISPRi and CRISPRa (Supplementary
Data 11).

For CRISPRi/a analysis, reads covering the guide sequences from each bin were
aligned to the designed guide sequences using Bowtie2 (2.2.1; default settings)70,
and the total number of each guide observed in each bin counted. Read counts
from each bin were modeled as if originating from a negative binomial distribution,
where the underlying distribution of cells targeted by each guide had a log
(expression level) that was normally distributed for each guide, with the same
variance as the entire distribution (since most guides are expected to have no effect)
and different means (that varied based on the effect of the guide). The percent of
cells that were sorted into each bin was used to determine which part of the normal
distribution each bin corresponded to, assuming that the leftmost and rightmost
expression bins each exclude the most extreme 0.1% of cells. The guide abundance
within unsorted cells was quantified and used to estimate guide abundance within
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the library. A pseudocount was added to each guide count consisting of one read
for every 100,000 total reads sequenced in that bin, corresponding to a prior that
there is no expression difference for cells containing the guide. For each guide, the
mean expression for that guide was estimated by maximizing the likelihood of the
observed guide counts for each bin under this model, given that guide’s overall
abundance. A z-score was estimated for each guide corresponding to how much the
mean TNFAIP3 expression of cells containing that guide differed from those
containing non-targeting guides by subtracting the mean of the non-targeting
guides.

In order to get element-level statistics, the z-scores for each guide were
combined in two ways: a significance z-score (proportional to a signed P-value),
and an effect-size z-score (the average z-score of guides targeting the element).
Significance z-scores were calculated by applying Stouffer’s method to the
individual guide’s z-scores. In order to correct these significance z-scores for the
noise of the assay, they were scaled by the standard deviation of Stouffer z-scores
calculated from the non-targeting guides. These scaling factors were calculated
independently for every number of guides per targeted element n (since the noise
in the Stouffer z-score depends on the number of guides used to calculate it). For
example, Stouffer z-scores for elements targeted with n= 5 guides were normalized
by the standard deviation of non-targeting Stouffer z-scores, each calculated from
randomly sampled groups of five non-targeting guides. Here, non-targeting
Stouffer z-scores were calculated by sampling the non-targeting guides into groups
of size n, including each non-targeting guide 10 times total, and calculating a set of
Stouffer z-scores from each sampling, and using the standard deviation of these z-
scores to scale the significance z-scores for each element for that n. P-values were
then calculated from these z-scores, considering only one-tailed tests
(downregulation for CRISPRi and upregulation for CRISPRa). For an element to be
considered significantly regulating TNFAIP3, we required that both replicates’
Benjamini–Hochberg FDRs were less than sqrt(0.1) (i.e. combined FDR < 0.1, and
both replicates close to significant independently) and for which the direction of
expression change was identical. In cases where there were more than two
replicates, we included only the two replicates for which the TNFAIP3 promoter
positive control guides showed the strongest effect. Element- and guide-level data
are available in Supplementary Data 5, 6.

MPRA. MPRA oligosynthesis and cloning was adapted from refs. 16,71, tagging
each allele with an average of ~250 DNA barcodes. Oligos were synthesized by
Agilent Technologies containing 150 bp of genomic context and 15 bp of adapter
sequence at either end (5′-ACTGGCCGCTTGACG[150 bp oligo]CACTGCGGC
TCCTGC-3′; Supplementary Data 8; 180 bp total). 20 bp barcodes and additional
adapter sequences were added by performing 28 emulsion PCR reactions each 50
μL in volume containing 1.86 ng of oligo, 25 μL of Q5 NEBNext MasterMix (NEB,
M0541S), 1 unit Q5 HotStart polymerase (NEB, M0493S), 0.5 μM MPRA_v3_F
and MPRA_v3_20I_R primers (Supplementary Data 11) and 2 ng BSA (NEB,
B9000). PCR master mix was emulsified by vortexing with 220 μL Tegosoft DEC
(Evonik), 60 μL ABIL WE (Evonik) and 20 μL mineral oil (Sigma, M5904) per 50
μL PCR reaction at 4 °C for 5 min. 50 μL of Emulsion mixture was added to each
well of a 96-well plate and cycled with the following conditions; 95 °C for 30 s, 15
cycles of (95 °C for 20 s, 60 °C for 10 s, 72 °C for 15 s), 72 °C for 5 min. Amplified
emulsion mixture was broken and purified by adding 1 mL of 2-butanol (VWR,
AA43315-AK), 50 μL of AMPure XP SPRI (Beckman Coulter, A63881) and 80 μL
of binding buffer (2.5 M NaCl, 20% PEG-8000) per 350 μL of Emulsion mix and
vigorously vortexed followed by incubation for 10 min at room temperature.
Broken emulsion/butanol mixture was spun at 2900 × g for 5 min and the butanol
phase was discarded. The aqueous phase was placed on a magnetic rack for 20 min
prior to aspiration. Remaining beads were washed once with 2-butanol, three times
with 80% EtOH and eluted in EB (Qiagen, 19086) to yield our barcoded oligo pool.

To create our mpraΔorf library, barcoded oligos were inserted into SfiI digested
pMPRA-lenti2 (pMPRA-lenti1ΔSfi1; pMPRA-lenti1: Addgene, 61600) by Gibson
Assembly (NEB, E2611) using 1.1 μg of oligos and 1 μg of digested vector in a 40 μL
reaction incubated for 60 min at 50 °C followed by AMPure XP SPRI purification
and elution in 20 μL of EB. Half of the ligated vector was then transformed into
100 μL of 10-beta e.coli (NEB, C3020K) by electroporation (2 kV, 200Ω, 25 μF).
Electroporated bacteria were immediately split into eight 1 mL aliquots of SOC
(NEB, B9020S) and recovered for 1 h at 37 °C then independently expanded in
20 mL of LB supplemented with 100 μg/mL of carbenicillin (EMD, 69101-3) on a
floor shaker at 37 °C for 6.5 h. After outgrowth aliquots were pooled prior to
plasmid purification (QIAGEN, 12963). For each of the aliquots we plated serial
dilutions after SOC recovery and estimated a library size of ~3.2 × 106 CFUs,
representing ~250 barcodes per allele.

To insert the TNFAIP3 promoter and GFP ORF, 20 μg of mpra:Δorf plasmid
was linearized with XbaI (NEB, R0145S) and KpnI-HF (NEB, R3142S) and 1x
cutsmart buffer (NEB, B7204S) in a 500 μL volume for 3.5 h at 37 °C, followed by
SPRI cleaning. An amplicon containing 165 bp of the TNFAIP3 ORF, GFP open-
reading frame and a partial 3′ UTR was then inserted by Gibson assembly using
10 μg of XbaI and KpnI linearized mpraΔorf plasmid, 33 μg of the pTNFAIP3/GFP
amplicon in 400 μL of total volume for 90 min at 50 °C followed by a 1.5× beads/
sample SPRI purification. The total recovered volume was digested a second time
to remove remaining uncut vectors by incubation with KpnI and XbaI in a 100 μL

reaction for 6 h at 37 °C followed by Ampure XP purification and elution with
55 μL of Buffer EB.

10 μL of the mpra:pTNFAIP3:gfp plasmid was electroporated (2 kV, 200Ω,
25 μF) into 220 μL of 10-beta cells. Electroporated bacteria was split across six tubes
and each recovered in 2 mL of SOC for 1 h at 37 °C then added to 500 mL of LB
with 100 μg/mL of carbenicillin and grown for 9 h at 37 °C prior to plasmid
purification (Qiagen, 12991). The plasmid prep was then normalized to 1 μg/μL to
generate our final mpra:pTNFAIP3:gfp library used for transfection and lentiviral
delivery.

For all transfections, cells were grown to a density of ~1 × 106 cells/mL and 5 ×
107 cells were used for each experiment. Cells were collected by centrifugation at
300 × g and eluted in 550 μL of RPMI with 55 μg of mpra:pTNFAIP3:gfp library.
Electroporation was performed in 100 μL volumes with the Neon transfection
system (Life Technologies) applying three pulses of 1200 V for 20 ms each
(GM12878) and three pulses of 1325 V for 10 ms each (Jurkat). Using separate
control transfections, we achieved transfection efficiencies of 40–60% for all
replicates. Cells were allowed to recover in 180 mL in RPMI with 15% FBS for 24 h
then collected by centrifugation, washed once with PBS, collected and frozen at
−80 °C.

For all transductions, 500 × 106 cells were split into 24-well plates (2M per well
in 1 mL of media, 10 plates) infected with lentivirus at an MOI > 1 using polybrene
(8 μg/mL) using spin transduction (1760 × g, 90 min, 32 °C). Cells were then pooled
and centrifuged at 500 × g, the viral supernatant was aspirated, and the cells were
resuspended in fresh media at 5 × 105 cells/mL, and cultured for 4 days
maintaining a density between 2 and 10 × 105/mL. Cells were then harvested
through centrifugation at 500 × g, washed with PBS, centrifuged again, and cell
pellets were frozen at −80 °C.

Total RNA was extracted from cells using Qiagen Maxi RNeasy (Qiagen, 75162)
following the manufacturer’s protocol including the on-column DNase digestion. A
second DNase treatment was performed on the purified RNA using 5 μL of Turbo
DNase (Life Technologies, AM2238) with buffer, in 750 μL of total volume for 1 h
at 37 °C. The digestion was stopped with the addition of 7.5 μL 10% SDS and 75 μL
of 0.5 M EDTA followed by a 5 min incubation at 70 °C. The total reaction was
then used for pulldown of GFP mRNA. Water was added to the DNase digested
RNA to bring the total volume to 898 μL to which 900 μL of 20X SSC (Life
Technologies, 15557-044), 1800 μL of Formamide (Life Technologies, AM9342)
and 2 μL of 100 μM biotin-labeled GFP probe (GFP_BiotinCapture_1-3, IDT,
Supplementary Data 11) were added and incubated for 2.5 h at 65 °C. Biotin probes
were captured using 400 μL of pre-washed Streptavidin beads (Life Technologies,
65001) eluted in 500 μL of 20X SSC. The hybridized RNA/probe bead mixture was
agitated on a nutator at room temperature for 15 min. Beads were captured by
magnet and washed once with 1× SSC and twice with 0.1× SSC. Elution of RNA
was performed by the addition of 25 μL water and heating of the water/bead
mixture for 2 min at 70 °C followed by immediate collection of eluent on a magnet.
A second elution was performed by incubating the beads with an additional 25 μL
of water at 80 °C. A final DNase treatment was performed in 50 μL total volume
using 1 μL of Turbo DNase with addition of the buffer incubated for 60 min at
37 °C followed by inactivation with 1 μL of 10% SDS and purification using RNA
clean SPRI beads (Beckman Coulter, A63987).

First-strand cDNA was synthesized from half of the DNase-treated GFP mRNA
with SuperScript III and a primer specific to the 3′ UTR (MPRA_v3_Amp2Sc_R,
Supplementary Data 11) using the manufacturer’s recommended protocol,
modifying the total reaction volume to 40 μL and performing the elongation step
at 47 °C for 80 min. Single-stranded cDNA was purified by SPRI and eluted in
30 μL EB.

To minimize amplification bias during the creation of cDNA tag sequencing
libraries, samples were amplified by qPCR to estimate relative concentrations of GFP
cDNA using 1 μL of sample in a 10 μL PCR reaction containing 5 μL Q5 NEBNext
master mix, 1.7 μL Sybr green I diluted 1:10,000 (Life Technologies, S-7567) and
0.5 μM of TruSeq_Universal_Adapter and MPRA_Illumina_GFP_F primers
(Supplementary Data 11). Samples were amplified with the following qPCR
conditions: 95 °C for 20 s, 40 cycles (95 °C for 20 s, 65 °C for 20 s, 72 °C for 30 s),
72 °C for 2 min. The number of cycles for sample amplification was 1−n (the
number of cycles it took for each sample to pass the threshold) from the qPCR. To
add Illumina sequencing adapters, 10 μL of cDNA samples and mpra:pTNFAIP3:gfp
plasmid control (diluted to the qPCR cycle range of the samples) were amplified
using the reaction conditions from the qPCR scaled to 50 μL, excluding Sybrgreen I.
Amplified cDNA was SPRI purified and eluted in 40 μL of EB. Individual sequencing
barcodes were added to each sample by amplifying the entire 40 μL elution in a
100 μL Q5 NEBNext reaction with 0.5 μM of TruSeq_Universal_Adapter primer and
a reverse primer containing a unique 8 bp index (Illumina_Multiplex, Supplementary
Data 11) for sample demultiplexing post-sequencing. Samples were amplified at
95 °C for 20 s, six cycles (95 °C for 20 s, 64 °C for 30 s, 72 °C for 30 s), 72 °C for 2 min.
Indexed libraries were SPRI purified and pooled according to molar estimates from
Agilent TapeStation quantifications. Samples were sequenced using 1 × 30 bp
chemistry on an Illumina HiSeq 2500 or NextSeq.

To determine oligo/barcode combinations within the MPRA pool, Illumina
libraries were prepared from the mpraΔorf plasmid library by performing four
separate amplifications with 200 ng of plasmid in a 100 μL Q5 NEBNext PCR
reaction containing 0.5 μM of TruSeq_Universal_Adapter and
MPRA_v3_TruSeq_Amp2Sa_F primers (Supplementary Data 11) with the
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following conditions: 95 °C for 20 s, 6 cycles (95 °C for 20 s, 62 °C for 15 s, 72 °C for
30 s), 72 °C for 2 min. Amplified material was SPRI purified using a 0.6× bead/
sample ratio and eluted with 30 μL of EB. Sequencing indexes were then attached
using 20 μL of the eluted product and the same reaction conditions as for the tag-
seq protocol, except the number of enrichment cycles was lowered to 5. Samples
were molar pooled and sequenced using 2 × 150 bp chemistry on Illumina HiSeq
2500 and NextSeq.

MPRA RNA output and DNA input sequencing reads were mapped to the
known tag sequences using a custom python script (quantifyRNATags.py; available
from https://github.com/Carldeboer/MPRAs), allowing for up to four mismatches
within the constant region (the common sequence before the tag sequence) and no
mismatches within the tag sequence. The barcode counts were input, and tags
having fewer than 30 reads in the input (DNA) or 4 reads in the output (RNA)
were excluded from subsequent analysis. The log(DNA/RNA) ratio (expression)
was calculated using raw counts, scaled so that the median expression is 0, and the
expression levels G+C-content normalized such that the mean expression for every
%G+C was 0. Finally, to eliminate instances where the tag sequence modifies the
apparent expression level, any tags containing any one of eight blackballed 5-mer
DNA sequences were excluded. Blackballed 5-mers were defined as those for which
the absolute value of the average expression level of all tags containing that 5-mer
was >0.15.

SNPs were tested for allele-specific reporter activity by a two-sided Student’s t-
test, comparing the normalized log(RNA/DNA) expression values for the tags for
allele A compared to the tags for allele B. Only SNPs for which we had at least 80
good tags between the two alleles were tested. P-values were corrected for multiple
hypothesis testing by Benjamini–Hochberg FDR correction. Only SNPs that had an
FDR < 0.1 for at least two of the replicates and where the direction of allele-specific
reporter activity was consistent between all replicates were considered to be
significant.

Predicted TF-binding perturbation. In order to find TFs whose motifs were
disrupted, both alleles were scanned for each SNP with human and selected mouse
motifs from CIS-BP72 using VEP56 and a custom VEP module implementing the
GOMER approach73 for motif scanning (https://github.com/Carldeboer/
VEP_GOMER). In order to be considered a motif disruption, the region sur-
rounding the SNP must both be bound on one or both alleles (>95% of >1% MAF
SNPs), and the binding score difference in the log binding score between the alleles
must be at least 0.1 (roughly corresponding to about ~1% of SNPs being perturbed
per motif). Both code and motifs for this analysis are available here: https://github.
com/Carldeboer/VEP_GOMER.

Data integration and analysis. In order to gauge how much each assay enriched
for GWAS signal (as in Fig. 3), we considered all GWAS tag SNPs. Since the set of
causal SNPs remains unknown, we must use the set of potentially causal SNPs as an
enriched gold standard (e.g. fine mapped variants, or SNPs in tight LD (r2 > 0.8), as
used here). However, a single causal variant could underlie multiple GWAS tag
SNPs, for instance, if the causal SNP is in tight LD with both tag SNPs in the
GWAS population. Although a single GWAS tag SNP could represent multiple
underlying causal SNPs, we expect this to be uncommon, and a potential expla-
nation featuring fewer causal SNPs should be favored. With these considerations in
mind, we evaluated each assay for its ability to identify GWAS tag SNPs by being in
tight LD to hits. Since some assays could not assay every variant, only assayed
variants are included. Similarly, if a tag SNP had no assayed SNPs in tight LD, that
tag SNP was not included in evaluation of the assay since it could not have been
recovered by the assay. The pseudo-precision and pseudo-recall were calculated for
each assay as described in the “Results” section. The enrichment analysis using
credible sets instead of tag SNPs was performed identically, but instead of evalu-
ating the recovery of tag SNPs by being in tight LD to hits, we evaluated the
recovery of credible sets by having one or more hits within each credible set.

In order to gauge the significance of enrichment for each assay with limited tag
SNPs, we created an empirical null distribution by randomizing the data. Since
some of the assays (e.g. DHS, CRISPRi/a) have an inherent clustering of their hits
(i.e. SNPs within the same enhancer will share the same hit status), our null aimed
to preserve this clustering. Specifically, the null was derived by ordering the assayed
SNPs by genomic position and reassigning hit status Ha,s’=Ha,((s+i) mod n) for every
possible i (0 < i < n; where n is the number of assayed SNPs and mod is the modulo
operation), and, each time (i.e. for each value of i), calculating pseudo-precision
and pseudo-recall. P-values represent the fraction of this empirical null with at least
as high a pseudo-precision and pseudo-recall as that observed from the actual data.
We also tested random permutation of the SNP hit status as an alternative to
shifting. Here, we used 1000 independent random permutations of the SNP hits to
create the null model. Although both approaches yielded similar results (Fig. 3
genomic shifts and Supplementary Fig. 9d, e permutation), we opted to focus on
the random null created by shifting hit status; the random permutations fail to
capture the clustering of hits that results from genomic proximity and shared hit
origins (e.g. adjacent SNPs in the same open chromatin region). For example, if
there was only a single functional enhancer with CRISPRi which contained 10
SNPs, and the clustering of these SNPs prioritizes only one GWAS signal in one
region, the distribution of these SNPs randomly could result in as many as 10

GWAS positive results in a null permutation test. These null distributions form a
straight line in Fig. 3 because the numerator for both is the number of GWAS tag
SNPs recovered (nTH) and the denominators for both pseudo-precision and
pseudo-recall are invariant across the randomization (nH for pseudo-precision and
nT for pseudo-recall).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw and processed sequencing data for this study are available on NCBI GEO, under
accession “GSE136703”. Other sources for data that support our findings are available
from: 1000 Genomes, ENCODE, ChIP-Atlas, Immunobase, and GWAS Catalog.

Code availability
CRISPR analysis software is available at the following link: https://github.com/
Carldeboer/MAUDE. Both code and motifs for TF binding motif analysis are available at
the following link: https://github.com/Carldeboer/VEP_GOMER. Code for processing
MPRA data is available at the following link: https://github.com/Carldeboer/MPRAs.
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